Enhancement of Antimicrobial and Dyeing Properties of Cellulosic Fabrics via Chitosan Nanoparticles.

Polymers (Basel)

Pretreatment and Finishing of Cellulosic Fibers Department, Textile Research and Technology Institute, National Research Centre, 33 El-Behouth St., Dokki, Cairo 12622, Egypt.

Published: October 2022

The primary goal of this study is to prepare chitosan nanoparticles (CSNPs) by the ionic gelation method via the treatment of chitosan (0.2 wt.%) with tripolyphosphate (0.2 wt.%) ultrasonically for 45 min. FT-IR spectroscopy and TEM images were used to characterize and validate CSNP production. Cellulosic materials with different concentrations of CSNPs have better antibacterial and colouring characteristics. The treated cellulosic fabrics were analyzed by FT-IR spectroscopy, SEM, and thermogravimetric analysis. Colourimetric data measurements expressed in K/S values were used to evaluate the impact of CSNPs on the dyeing affinity of cellulosic materials. In addition, antibacterial activity against bacteria and fungi was tested on the treated cellulosic fabrics. According to the K/S values, cellulosic textiles treated with CSNPs (0.3 wt.%) had a better affinity for acid dyeing. These textiles also offer better antibacterial properties and are more resistant to washing, light, and rubbing. A cytotoxicity study found that CSNPs give cellulosic materials antibacterial and acid dyeing properties, which is good for the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573385PMC
http://dx.doi.org/10.3390/polym14194211DOI Listing

Publication Analysis

Top Keywords

cellulosic fabrics
12
cellulosic materials
12
dyeing properties
8
chitosan nanoparticles
8
ft-ir spectroscopy
8
better antibacterial
8
treated cellulosic
8
k/s values
8
acid dyeing
8
cellulosic
7

Similar Publications

Construction of magnetic response nanocellulose particles to realize smart antibacterial of pickering emulsion.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.

View Article and Find Full Text PDF

Anisotropic Nanofluidic Ionic Skin for Pressure-Independent Thermosensing.

ACS Nano

January 2025

College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China.

Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for creating twisted helical cellulose nanocrystal films using 3D printing, achieving unique optical properties.
  • The films exhibit high transparency and dual circular polarization, with different types depending on the printing orientation.
  • These materials have potential applications in photonics, thermal management, and energy efficiency due to their ability to manipulate light in the near-infrared region.
View Article and Find Full Text PDF

Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge.

View Article and Find Full Text PDF

Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia.

Int J Biol Macromol

December 2024

National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!