Risks from rockfall and land sliding can be controlled by high-tensile steel nets and meshes which stabilise critical areas. In many cases, a recultivation of the land is also desired. However, high-tensile steel meshes alone are not always sufficient, depending on the location and the inclination of the stabilised slope, to achieve rapid greening. Cellulose fibres exhibit high water binding capacity which supports plant growth. In this work, a hybrid structure consisting of a nonwoven cellulose fibre web and a steel mesh was produced and tested under outdoor conditions over a period of 61 weeks. The cellulose fibres are intended to support plant growth and soil fixation, and thus the biodegradation of the structure is highly relevant, as these fibres will become part of the soil and must be biodegradable. The biodegradation of the cellulose fibres over the period of outdoor testing was monitored by microscopy and analytical methods. The enzymatic degradation of the cellulose fibres led to a reduction in the average degree of polymerisation and also a reduction in the moisture content, as polymer chain hydrolysis occurs more rapidly in the amorphous regions of the fibres. FTIR analysis and determination of carboxylic group content did not indicate substantial changes in the remaining parts of the cellulose fibre. Plant growth covered geotextiles almost completely during the period of testing, which demonstrated their good compatibility with the greening process. Over the total period of 61 weeks, the residual parts of the biodegradable cellulose web merged with the soil beneath and growing plants. This indicates the potential of such hybrid concepts to contribute a positive effect in greening barren and stony land, in addition to the stabilising function of the steel net.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573017 | PMC |
http://dx.doi.org/10.3390/polym14194179 | DOI Listing |
mSystems
January 2025
Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:
Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.
View Article and Find Full Text PDFMater Today Bio
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.
View Article and Find Full Text PDFStay-green sorghum varieties are known for their drought resistance and ability to retain green biomass during grain filling, making them crucial for sustainable agriculture in arid regions. However, there is limited information on their stover yield (SY) and nutritional quality when both grain and forage are harvested. This study assessed five stay-green sorghum varieties at the Bako Agricultural Research Centre using a randomized complete block design with three replications in 2020, 2021, and 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!