Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% / PVP containing 3, 1.0, 0.6, and 0.2% / Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570984 | PMC |
http://dx.doi.org/10.3390/polym14194157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!