Bone implants or replacements are very scarce due to the low donor availability and the high rate of body rejection. For this reason, tissue engineering strategies have been developed as alternative solutions to this problem. This research sought to create a cellular scaffold with an intricate and complex network of interconnected pores and microchannels using salt leaching and additive manufacturing (3D printing) methods that mimic the hierarchical internal structure of the bone. A biocompatible hydrogel film (based on poly-ethylene glycol) was used to cover the surface of different polymeric scaffolds. This thin film was then exposed to various stimuli to spontaneously form wrinkled micropatterns, with the aim of increasing the contact area and the material's biocompatibility. The main innovation of this study was to include these wrinkled micropatterns on the surface of the scaffold by taking advantage of thin polymer film surface instabilities. On the other hand, salt and nano-hydroxyapatite (nHA) particles were included in the polymeric matrix to create a modified filament for 3D printing. The printed part was leached to eliminate porogen particles, leaving homogenously distributed pores on the structure. The pores have a mean size of 26.4 ± 9.9 μm, resulting in a global scaffold porosity of ~42% (including pores and microchannels). The presence of nHA particles, which display a homogeneous distribution according to the FE-SEM and EDX results, have a slight influence on the mechanical resistance of the material, but incredibly, despite being a bioactive compound for bone cells, did not show a significant increase in cell viability on the scaffold surface. However, the synergistic effect between the presence of the hydrogel and the pores on the material does produce an increase in cell viability compared to the control sample and the bare PCL material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571634 | PMC |
http://dx.doi.org/10.3390/polym14194041 | DOI Listing |
3D Print Med
January 2025
Department of Surgical & Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Background: Penile implant surgery is the standard surgical treatment for end-stage erectile dysfunction. However, the growing complexity of modern high-tech penile prostheses has increased the demand for more practical training opportunities. The most advanced contemporary training methods involve simulation training using cadavers, with costs exceeding $5,000 per cadaver, inclusive of biohazard fees.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.
Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Orthopaedic Oncology, Aarhus University Hospital, Aarhus N, Denmark.
Introduction: In recent years, numerous hospitals have established in-house three-dimensional (3D) printing centers, enabling health-care facilities to leverage the transformative capabilities of additive manufacturing technology on their premises. With this emerging opportunity arises a necessity to undertake a thorough assessment of the manufactured tools employed in clinical practice. The objectives of this article are to describe the pathway of in-house printing and evaluate the accuracy of 3D-printed specific instruments.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2100 Copenhagen, Denmark. Electronic address:
Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!