Production and Assessment of Poly(Lactic Acid) Matrix Composites Reinforced with Regenerated Cellulose Fibres for Fused Deposition Modelling.

Polymers (Basel)

Division of Health, Engineering, Computing & Science, School of Engineering, The University of Waikato, Private Bag 3105, Hamilton 3216, New Zealand.

Published: September 2022

Additive manufacturing can be a valuable tool to process polymeric composites reinforced with bio-based fibres, extending their use and opening new opportunities for more environmentally friendly materials. In this work, poly(lactic acid) (PLA) composites reinforced with regenerated cellulose fibres (lyocell) were processed into novel filaments and used for 3D printing. The Young's modulus of the filaments increased with the addition of fibres, but substantial porosity was observed in formulations with 20 and 30 wt% of fibre content. Nonetheless, the composites were easily printed, and the formulation with 10 wt% of fibres presented the best tensile properties of 3D printed samples with average tensile strength, Young's modulus, and strain at break of 64.2 MPa, 4.56 GPa, and 4.93%, respectively. It has been shown in this study that the printing process contributes to fibre alignment with small variations depending on the printing speed. Printed composite samples also had superior thermo-mechanical stability with a storage modulus up to 72 times higher than for neat PLA at 80 °C after the composite samples were heat-treated. In general, this work supports the potential use of regenerated cellulose fibres to reinforce PLA for 3D printing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571083PMC
http://dx.doi.org/10.3390/polym14193991DOI Listing

Publication Analysis

Top Keywords

composites reinforced
12
regenerated cellulose
12
cellulose fibres
12
polylactic acid
8
reinforced regenerated
8
young's modulus
8
composite samples
8
fibres
6
production assessment
4
assessment polylactic
4

Similar Publications

The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated.

View Article and Find Full Text PDF

Purpose: This study investigated the bond strength between short fiber-reinforced resin composite (SFC) and dentin following air abrasion with various types of abrasive particles.

Methods: A total of 120 human molars were prepared for a shear bond strength (SBS) test of the resin composite. The teeth were divided into 12 groups (n = 10/group) based on the air abrasion particle used.

View Article and Find Full Text PDF

Synergistic enhancement of high-barrier polylactic acid packaging materials by various morphological carbonized cellulose nanocrystals.

Carbohydr Polym

March 2025

Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

The environmental challenges linked to petroleum-based polymers have accelerated the search for alternative materials like polylactic acid (PLA). Diverse nanofillers, ranging from inorganic to organic and hybrid inorganic/organic varieties, are employed to bolster PLA performance. Yet, non-synergistic nanofillers often underperform due to inadequate dispersion and singular functionality within the PLA matrix.

View Article and Find Full Text PDF

Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability.

View Article and Find Full Text PDF

Nanocellulose-reinforced nanofiber composite poly(aryl ether ketone) polymer electrolyte for advanced lithium batteries.

Int J Biol Macromol

January 2025

Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:

Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!