Utilization of Polymeric Materials toward Sustainable Biodiesel Industry: A Recent Review.

Polymers (Basel)

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia.

Published: September 2022

The biodiesel industry is expanding rapidly in accordance with the high energy demand and environmental deterioration related to the combustion of fossil fuel. However, poor physicochemical properties and the malperformance of biodiesel fuel still concern the researchers. In this flow, polymers were introduced in biodiesel industry to overcome such drawbacks. This paper reviewed the current utilizations of polymers in biodiesel industry. Hence, four utilizing approaches were discussed, namely polymeric biodiesel, polymeric catalysts, cold-flow improvers (CFIs), and stabilized exposure materials. Hydroxyalkanoates methyl ester (HAME) and hydroxybutyrate methyl ester (HBME) are known as polymeric biodiesel sourced from carbon-enriched polymers with the help of microbial activity. Based on the literature, the highest HBME yield was 70.7% obtained at 10% HSO ratio in methanol, 67 °C, and 50 h. With increasing time to 60 h, HAME highest yield was reported as 68%. In addition, polymers offer wide range of esterification/transesterification catalysts. Based on the source, this review classified polymeric catalysts as chemically, naturally, and waste derived polymeric catalysts. Those catalysts proved efficiency, non-toxicity, economic feasibility, and reusability till the 10th cycle for some polymeric composites. Besides catalysis, polymers proved efficiency to enhance the biodiesel flow-properties. The best effect reported in this review was an 11 °C reduction for the pour point (PP) of canola biodiesel at 1 wt% of ethylene/vinyl acetate copolymers and cold filter plugging point (CFPP) of B20 waste oil biodiesel at 0.08 wt% of EVA copolymer. Polymeric CFIs have the capability to modify biodiesel agglomeration and facilitate flowing. Lastly, polymers are utilized for storage tanks and auto parts products in direct contact with biodiesel. This approach is completely exclusive for polymers that showed stability toward biodiesel exposure, such as polyoxymethylene (POM) that showed insignificant change during static immersion test for 98 days at 55 °C. Indeed, the introduction of polymers has expanded in the biodiesel industry to promote green chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572429PMC
http://dx.doi.org/10.3390/polym14193950DOI Listing

Publication Analysis

Top Keywords

biodiesel industry
20
biodiesel
14
polymeric catalysts
12
polymers
8
polymeric biodiesel
8
methyl ester
8
proved efficiency
8
polymeric
7
industry
5
catalysts
5

Similar Publications

With the rapid development of synthetic biology, genetic engineering, and molecular manipulation methods in recent years, microalgae, as representatives of microbial cell factories, have been widely used as hosts in the production of high-value bioproducts, such as oils, pigments, proteins, and biofuels, demonstrating promising prospects of application in biochemical energy, food and drugs, and environmental protection. Despite these advancements, the low production efficiency of microalgae limits their industrial application. In addition to strain improvement and culture condition optimization, the regulation by exogenous chemical additives serves as a promising optimization strategy.

View Article and Find Full Text PDF

The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study.

View Article and Find Full Text PDF

There is concern over potential toxic elements (PTEs) impacting river ecosystems due to human and industrial activities. The river's water, sediment, and aquatic life are all severely affected by the release of chemical and urban waste. PTE concentrations in sediment, water, and aquatic species from river ecosystems are reported in this review.

View Article and Find Full Text PDF

GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential.

Mar Drugs

December 2024

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, UNOVA University of Lisbon, 2829-516 Caparica, Portugal.

This study investigated the fatty acids (FA) profile of 54 actinomycete strains isolated from marine sediments collected off the Portugal continental coast, specifically from the Estremadura Spur pockmarks field, by GC/MS. Fatty acid methyl esters (FAMEs) were prepared from the ethyl acetate lipidic extracts of these strains and analyzed by gas chromatography-mass spectrometry (GC/MS), with FA identification performed using the NIST library. The identified FAs varied from C12:0 to C20:0, where 32 distinct FAs were identified, including 7 branched-chain fatty acids (BCFAs), 9 odd-chain fatty acids (OCFAs), 8 monounsaturated fatty acids (MUFAs), 6 saturated fatty acids (SFAs), 1 polyunsaturated fatty acid (PUFA), and 1 cyclic chain fatty acid (CCFA).

View Article and Find Full Text PDF

Recent advances in engineering non-native microorganisms for poly(3-hydroxybutyrate) production.

World J Microbiol Biotechnol

January 2025

Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!