A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Foliar Application of Enhances the Rice Crop Growth and Yield under Field Conditions. | LitMetric

Foliar Application of Enhances the Rice Crop Growth and Yield under Field Conditions.

Plants (Basel)

Department of Plant Industry, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan.

Published: September 2022

Anthropogenic activities causing climate change and other environmental effects are lowering crop yield by deteriorating the growing environment for crops. Rice, a globally important cereal crop, is under production threat due to climate change and land degradation. This research aims to sustainably improve rice growth and yield by using , a plant growth-promoting bacteria that has recently gained much attention in crop production. The experiment was set up in two fields, one as a control and the other as a PNSB-treated field. The foliar application of treatment was made fortnightly until the end of the vegetative stage. Data on the growth, yield, and antioxidant enzymes were collected weekly. The results of this experiment indicate no significant differences in the plant height, root volume, average grain per panicle, biological yield, grain fertility, and antioxidant enzyme activity between the PNSB-treated and untreated plants. However, a significant increase in the tiller number, leaf chlorophyll content and lodging resistance were noted with PNSB treatment. Likewise, PNSB-treatment significantly increased root length (25%), root dry weight (57%), productive tillers per plants (26%), average grains per plant (38%), grain yield (33%), 1000 grain weight (1.6%), and harvest index (41%). Hence, from this research, it can be concluded that foliar application of PNSB on rice crops under field conditions improves crop growth and yield, although it does not affect antioxidant enzyme activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614608PMC
http://dx.doi.org/10.3390/plants11192452DOI Listing

Publication Analysis

Top Keywords

growth yield
16
foliar application
12
crop growth
8
field conditions
8
climate change
8
crop production
8
antioxidant enzyme
8
enzyme activity
8
yield
7
crop
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!