The hA5G18 peptide (DDFVFYVGGYPS) identified from the human laminin α5 chain G domain promotes cell attachment and spreading when directly coated on a plastic plate, but does not show activity when it is conjugated on a chitosan matrix. Here, we focused on the structural requirement of hA5G18 for activity. hA5G18 was stained with Congo red and formed amyloid-like fibrils. A deletion analysis of hA5G18 revealed that FVFYV was a minimum active sequence for the formation of amyloid-like fibrils, but FVFYV did not promote cell attachment. Next, we designed functional fibrils using FVFYV as a template for amyloid-like fibrils. When we conjugated an integrin binding sequence Arg-Gly-Asp (RGD) to the FVFYV peptide with Gly-Gly (GG) as a spacer, FVFYVGGRGD promoted cell attachment in a plate coat assay, but a negative control sequence RGE conjugated peptide, FVFYVGGRGE, also showed activity. However, when the peptides were conjugated to Sepharose beads, the FVFYVGGRGD beads showed cell attachment activity, but the FVFYVGGRGE beads did not. These results suggest that RGD and RGE similarly contribute to cell attachment activity in amyloid-like fibrils, but only RGD contributes the activity on the Sepharose beads. Further, we conjugated a basic amino acid (Arg, Lys, and His) to the FVFYV peptide. Arg or Lys-conjugated FVFYV peptides, FVFYVGGR and FVFYVGGK, showed cell attachment activity when they were coated on a plate, but a His-conjugated FVFYV peptide FVFYVGGH did not show activity. None of the basic amino acid-conjugated peptides showed cell attachment in a Sepharose bead assay. The cell attachment and spreading on FVFYVGGR and FVFYVGGK were inhibited by an anti-integrin β1 antibody. These results suggest that the Arg and Lys residues play critical roles in the interaction with integrins in amyloid-like fibrils. FVFYV is useful to use as a template for amyloid-like fibrils and to develop multi-functional biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573118 | PMC |
http://dx.doi.org/10.3390/molecules27196610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!