Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization.

Molecules

Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.

Published: October 2022

Innovative technologies can transform what are now considered "waste streams" into feedstocks for a range of products. Indeed, the use of biomass as a source of biopolymers and chemicals currently has a consolidated economic dimension, with well-developed and regulated markets, in which the evaluation of the manufacturing processes relies on specific criteria such as purity and yield, and respects defined regulatory parameters for the process safety. In this context, ionic liquids and deep eutectic solvents have been proposed as environmentally friendly solvents for applications related to biomass waste valorization. This mini-review draws attention to some recent advancements in the use of a series of new-solvent technologies, with an emphasis on deep eutectic solvents (DESs) as key players in the development of new processes for biomass waste valorization. This work aims to highlight the role and importance of DESs in the following three strategic areas: chitin recovery from biomass and isolation of valuable chemicals and biofuels from biomass waste streams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573730PMC
http://dx.doi.org/10.3390/molecules27196606DOI Listing

Publication Analysis

Top Keywords

deep eutectic
12
eutectic solvents
12
waste valorization
12
biomass waste
12
solvents
5
biomass
5
solvents alternative
4
alternative solvents
4
solvents biomass-based
4
waste
4

Similar Publications

The current research focused on extraction optimization of bioactive compounds from Strychnos potatorum seeds (SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The independent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and antidiabetic activity (α-amylase inhibitory activity).

View Article and Find Full Text PDF

Electrooxidation of 5-Hydroxymethylfurfural via NiP-NiSe Heterostructure Nanosheet Arrays.

Inorg Chem

January 2025

Zhejiang Carbon Neutral Innovation Institute and Moganshan Institute of ZJUT at Deqing, Zhejiang University of Technology, Hangzhou 310014, China.

The electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has been deeply investigated. However, developing a durable electrocatalyst for fast production of FDCA at low potentials remains a challenge. Herein, we report NiP-NiSe heterostructure nanosheet arrays as efficient electrocatalysts for HMF electrooxidation.

View Article and Find Full Text PDF

Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes.

View Article and Find Full Text PDF

Selenium (Se) is a crucial trace element that demonstrates significant immunomodulatory effects, which are attributed to the variability in its valence states and metabolic pathways. To investigate the Se-related immunoregulatory effects, locust bean gum (LBG), a typical galactomannan, was selenized by employing deep eutectic solvents (DESs) as high-efficiency solvents to obtain Se-covalent modified LBG (SeLBGs) with similar molecular mass and different Se contents (SeLBG, 1049.57 and SeLBG, 4926.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!