Read-across applies the principle of similarity to identify the most similar substances to represent a given target substance in data-poor situations. However, differences between the target and the source substances exist. The present study aims to screen and assess the effect of the key components in a molecule which may escape the evaluation for read-across based only on the most similar substance(s) using a new open-access software: Virtual Extensive Read-Across (VERA). VERA provides a means to assess similarity between chemicals using structural alerts specific to the property, pre-defined molecular groups and structural similarity. The software finds the most similar compounds with a certain feature, e.g., structural alerts and molecular groups, and provides clusters of similar substances while comparing these similar substances within different clusters. Carcinogenicity is a complex endpoint with several mechanisms, requiring resource intensive experimental bioassays and a large number of animals; as such, the use of read-across as part of new approach methodologies would support carcinogenicity assessment. To test the VERA software, carcinogenicity was selected as the endpoint of interest for a range of botanicals. VERA correctly labelled 70% of the botanicals, indicating the most similar substances and the main features associated with carcinogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570968PMC
http://dx.doi.org/10.3390/molecules27196605DOI Listing

Publication Analysis

Top Keywords

virtual extensive
8
extensive read-across
8
open-access software
8
carcinogenicity assessment
8
structural alerts
8
molecular groups
8
read-across
6
substances
6
carcinogenicity
5
read-across open-access
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!