Oxidative stress is involved in the pathophysiology of many neurodegenerative diseases. Lichens have antioxidant properties attributed to their own secondary metabolites with phenol groups. Very few studies delve into the protective capacity of lichens based on their antioxidant properties and their action mechanism. The present study evaluates the neuroprotective role of , , and methanol extracts in a hydrogen peroxide (HO) oxidative stress model in neuroblastoma cell line "SH-SY5Y cells". Cells were pretreated with different concentrations of lichen extracts (24 h) before HO (250 µM, 1 h). Our results showed that (10 µg/mL), (25 µg/mL), (50 µg/mL) and (5 µg/mL) prevented cell death and morphological changes. Moreover, these lichens significantly inhibited reactive oxygen species (ROS) production and lipid peroxidation and increased superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) levels. Furthermore, they attenuated mitochondrial membrane potential decline and calcium homeostasis disruption. Finally, high-performance liquid chromatography (HPLC) analysis revealed that the secondary metabolites were gyrophoric acid and lecanoric acid in , usnic acid, pinastric acid and vulpinic acid in , and alectoronic acid in . In conclusion, and are the most promising lichens to prevent and to treat oxidative stress-related neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573381 | PMC |
http://dx.doi.org/10.3390/molecules27196520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!