The quality of Chinese medicinal materials depends on the content of bioactive components, which are affected by the environmental factors of different planting regions. In this research, integrated analysis of the transcriptome and metabolome of 'Chachi' was performed in two regions, and three orchards were included in the analysis. In total, only 192 compounds were found in fresh peels, and among 18 differentially accumulated flavonoid metabolites, 15 flavonoids were enriched in peels from the Xinhui planting region. In total, 1228 genes were up-regulated in peels from Xinhui, including the and genes, which are involved in the salt stress response. Overall, based on the correlation analysis of flavonoid content and gene expression in peels of 'Chachi', we concluded that the authenticity of the GCRP from Xinhui may be closely related to the higher content of naringin and narirutin, and the increase in the content of these may be due to the highly saline environment of the Xinhui region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570620 | PMC |
http://dx.doi.org/10.3390/molecules27196476 | DOI Listing |
Plant Mol Biol
January 2025
College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300392, China.
Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.
View Article and Find Full Text PDFStudies generating transcriptomics, proteomics, lipidomics, and metabolomics (colloquially referred to as "omics") data allow researchers to find biomarkers or molecular targets or understand complex biological structures and functions by identifying changes in biomolecule abundance and expression between experimental conditions. Omics data are multidimensional, and oftentimes summarization techniques such as principal component analysis (PCA) are used to identify high-level patterns in data. Though useful, these summaries do not allow exploration of detailed patterns in omics data that may have biological relevance.
View Article and Find Full Text PDFFront Pharmacol
January 2025
College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Background: Berberine (BBR) is widely used to treat gastrointestinal diseases. However, the pharmacological mechanism of action of BBR in anti-chronic atrophic gastritis (CAG) remains unclear. This study aimed to investigate the mechanism of action of BBR in CAG by integration of molecular biology and multi-omics studies strategy.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Virology and Biotechnology, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
Fluoroquinolone antibiotic enrofloxacin (ENR) is frequently detected in agricultural environments. The hormesis and detrimental effects of ENR on crops have been extensively observed. However, the molecular mechanisms underlying these crops' responses to ENR remain limited.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
Background: Pulmonary arterial hypertension (PAH) is a progressive disorder that can lead to right ventricular failure and severe consequences. Despite extensive efforts, limited progress has been made in preventing the progression of PAH. Mitochondrial dysfunction is implicated in the development of PAH, but the key mitochondrial functional alterations in the pathogenesis have yet to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!