A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High Endogenously Synthesized N-3 Polyunsaturated Fatty Acids in Fat-1 Mice Attenuate High-Fat Diet-Induced Insulin Resistance by Inhibiting NLRP3 Inflammasome Activation via Akt/GSK-3β/TXNIP Pathway. | LitMetric

AI Article Synopsis

  • * Endogenous n-3 polyunsaturated fatty acids (PUFAs) can counteract these effects; they reduce insulin resistance despite weight gain on HF diets by modulating key cellular pathways, including Akt and GSK-3β.
  • * The findings highlight n-3 PUFAs' potential as a preventive or supportive treatment for inflammatory diseases linked to the NLRP3 inflammasome.

Article Abstract

High-fat (HF) diets and low-grade chronic inflammation contribute to the development of insulin resistance and type 2 diabetes (T2D), whereas n-3 polyunsaturated fatty acids (PUFAs), due to their anti-inflammatory effects, protect against insulin resistance. Interleukin (IL)-1β is implicated in insulin resistance, yet how n-3 PUFAs modulate IL-1β secretion and attenuate HF diet-induced insulin resistance remains elusive. In this study, a HF diet activated NLRP3 inflammasome via inducing reactive oxygen species (ROS) generation and promoted IL-1β production primarily from adipose tissue preadipocytes, but not from adipocytes and induced insulin resistance in wild type (WT) mice. Interestingly, endogenous synthesized n-3 polyunsaturated fatty acids (PUFAs) reversed this process in HF diet-fed fat-1 transgenic mice although the HF diet induced higher weight gain in fat-1 mice, compared with the control diet. Mechanistically, palmitic acid (PA), the main saturated fatty acid in an HF diet inactivated AMPK and led to decreased GSK-3β phosphorylation, at least partially through reducing Akt activity, which ultimately blocked the Nrf2/Trx1 antioxidant pathway and induced TXNIP cytoplasm translocation and NLRP3 inflammasome activation, whereas docosahexaenoic acid (DHA), the most abundant n-3 PUFA in fat-1 adipose tissue, reversed this process via inducing Akt activation. Our shRNA knockdown study further revealed that GSK-3β played a pivot role between the upstream AMPK/Akt pathway and downstream Nrf2/Trx1/TXNIP pathway. Given that NLRP3 inflammasome is implicated in the development of most inflammatory diseases, our results suggest the potential of n-3 PUFAs in the prevention or adjuvant treatment of NLRP3 inflammasome-driven diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570616PMC
http://dx.doi.org/10.3390/molecules27196384DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
nlrp3 inflammasome
16
n-3 polyunsaturated
12
polyunsaturated fatty
12
fatty acids
12
synthesized n-3
8
fat-1 mice
8
diet-induced insulin
8
inflammasome activation
8
acids pufas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!