Coconut husk biomass waste was used as the carbon precursor to develop a simple and economical process for the preparation of hierarchical porous activated carbon, and the electrochemical properties of the electrode material were explored. The important process variables of carbonization, the weight ratios of the coconut shell/KOH, the amount of source dopant, and the carbonization temperature were investigated in order to reveal the influence of the as-obtained microporous/mesoporous/macroporous hierarchical porous carbon materials on the powder properties. Using a BET specific surface area analyzer, Raman analysis, XPS and SEM, surface morphology, pore distribution and specific surface area of the hierarchical porous carbon materials are discussed. The results show that the as-prepared N-, S- and O-heteroatom-co-doped activated carbon electrode was manufactured at 700 °C for electrochemical characteristics. The electrochemical behavior has the characteristics of pseudo-capacitance, and could reach 186 F g at 1 A g when measured by the galvanostatic charge-discharge (GCD) test. After 7000 cycles of the charge-discharge test, the initial capacitance value retention rate was 95.6%. It is predicted that capacitor materials made when using coconut shell as a carbon source will have better energy storage performance than traditional carbon supercapacitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565498 | PMC |
http://dx.doi.org/10.3390/nano12193504 | DOI Listing |
RSC Adv
January 2025
School of Materials Science and Physics, China University of Mining and Technology Xuzhou 221116 China
Heteroatom-doped hierarchical porous carbon (AF-MMTC) was prepared with hard template and salt template dual templating agents, and the effects of salt template additions on its micro-morphology, pore structure, specific surface area and electrochemical properties were investigated. The salt template not only acts as a template, but also plays the role of a pore-making agent. AF-MMTC5 has a high specific surface area of 1772 m g, a 41% microporous content and 1.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University 197 Inje-ro Gimhae Gyeongnam-do 50834 Republic of Korea
Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.
View Article and Find Full Text PDFACS Sens
January 2025
School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.
View Article and Find Full Text PDFSmall
January 2025
Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK.
Bismuth-layered ferroelectric nanomaterials exhibit great potential for piezo-photocatalysis. However, a major challenge lies in the difficulty of recovering the catalytic powders, raising concerns regarding secondary pollution of water. In this work, a novel hierarchical porous ferroelectric ceramic containing {110} surface-exposed BiNdTiO (BIT-Nd) nanosheet arrays is grown on a porous ceramic matrix for efficient and recyclable piezo-photocatalysis.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.
In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!