Modern electronics not only require the thermal management ability of polymer packaging materials but also need anti-voltage and mechanical properties. Boron nitride nanosheets (BNNS), an ideal thermally conductive and high withstand voltage (800 kV/mm) filler, can meet application needs, but the complex and low-yield process limits their large-scale fabrication. Herein, in this work, we prepare sucrose-assisted ball-milled BN(SABM-BN)/polyetherimide (PEI) composite films by a casting-hot pressing method. SABM-BN, as a pre-ball-milled filler, contains BNNS and BN thick sheets. We mainly investigated the thermal conductivity (TC), breakdown strength, and mechanical properties of composites. After pre-ball milling, the in-plane TC of the composite film is reduced. It decreases from 2.69 to 2.31 W/mK for BN/PEI composite film at 30 wt% content; however, the through-plane TC of composites is improved, and the breakdown strength and tensile strength of the composite film reach the maximum of 54.6 kV/mm and 102.7 MPa at 5 wt% content, respectively. Moreover, the composite film is used as a flexible circuit substrate, and the working surface temperature is 20 ℃, which is lower than that of pure PEI film. This study provides an effective strategy for polymer composites for electronic packaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565508 | PMC |
http://dx.doi.org/10.3390/nano12193473 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.
Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of General Medicine, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai -600116, Tamil Nadu, India.
Aim: This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.
Background: Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.
ACS Appl Mater Interfaces
January 2025
School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China. Electronic address:
In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!