A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Lipidic Nanoplatform for Intra-Oral Delivery of Chlorhexidine: Characterization, Biocompatibility, and Assessment of Depth of Penetration in Extracted Human Teeth. | LitMetric

AI Article Synopsis

  • Microorganisms often lead to the failure of root canal treatments due to their ability to penetrate root structures, complicating irrigation effectiveness because of biofilm growth.
  • This study aimed to create liposomes containing chlorhexidine to improve antibacterial action and penetration into dentinal tubules compared to standard chlorhexidine solutions.
  • Results showed that liposomal chlorhexidine had a better penetration depth in tooth roots and had lower cytotoxic effects on mouse fibroblast cells while also being more effective at reducing bacterial colony counts.*

Article Abstract

Microorganisms are the major cause for the failure of root canal treatment, due to the penetration ability within the root anatomy. However, irrigation regimens have at times failed due to the biofilm mode of bacterial growth. Liposomes are vesicular structures of the phospholipids which might help in better penetration efficiency into dentinal tubules and in increasing the antibacterial efficacy. Methods: In the present work, chlorhexidine liposomes were formulated. Liposomal chlorhexidine was characterized by size, zeta potential, and cryo-electron microscope (Cryo-EM). Twenty-one single-rooted premolars were extracted and irrigated with liposomal chlorhexidine and 2% chlorhexidine solution to evaluate the depth of penetration. In vitro cytotoxicity study was performed for liposomal chlorhexidine on the L929 mouse fibroblast cell line. Results: The average particle size of liposomes ranged from 48 ± 4.52 nm to 223 ± 3.63 nm with a polydispersity index value of <0.4. Cryo-EM microscopic images showed spherical vesicular structures. Depth of penetration of liposomal chlorhexidine was higher in the coronal, middle, and apical thirds of roots compared with plain chlorhexidine in human extracted teeth when observed under the confocal laser scanning microscope. The pure drug exhibited a cytotoxic concentration at which 50% of the cells are dead after a drug exposure (IC50) value of 12.32 ± 3.65 µg/mL and 29.04 ± 2.14 µg/mL (on L929 and 3T3 cells, respectively) and liposomal chlorhexidine exhibited an IC50 value of 37.9 ± 1.05 µg/mL and 85.24 ± 3.22 µg/mL (on L929 and 3T3 cells, respectively). Discussion: Antimicrobial analysis showed a decrease in colony counts of bacteria when treated with liposomal chlorhexidine compared with 2% chlorhexidine solution. Nano-liposomal novel chlorhexidine was less cytotoxic when treated on mouse fibroblast L929 cells and more effective as an antimicrobial agent along with higher penetration ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565570PMC
http://dx.doi.org/10.3390/nano12193372DOI Listing

Publication Analysis

Top Keywords

liposomal chlorhexidine
12
depth penetration
8
chlorhexidine
6
development lipidic
4
lipidic nanoplatform
4
nanoplatform intra-oral
4
intra-oral delivery
4
delivery chlorhexidine
4
chlorhexidine characterization
4
characterization biocompatibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!