The present study provides analytical and numerical solutions for an electromagnetohydrodynamic (EMHD) flow using a Caputo time-fractional Maxwell model. The flow is a typical rectangular channel flow. When the scale of the cross-stream is much smaller than the streamwise and spanwise scales, the model is approximated as a two-dimensional slit parallel plate flow. Moreover, the influence of the electric double layer (EDL) at the solid-liquid interface is also considered. The electro-osmotic force generated by the interaction between the electric field and the EDL will induce a flow (i.e., electro-osmotic flow). Due to the application of the electric field at the streamwise and the vertical magnetic field, the flow is driven by Lorentz force along the spanwise direction. Simultaneously, under the action of the magnetic field, the electro-osmotic flow induces a reverse Lorentz force, which inhibits the electro-osmotic flow. The result shows that resonance behavior can be found in both directions in which the flow is generated. However, compared with the classical Maxwell fluid, the slip velocity and resonance behavior of fractional Maxwell fluid are suppressed. In the spanwise direction, increasing the strength of magnetic field first promotes the slip velocity and resonance behavior, and then suppresses them, while in the streamwise direction, both the electro-osmotic flow and resonance behavior are suppressed with the magnetic field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565497PMC
http://dx.doi.org/10.3390/nano12193335DOI Listing

Publication Analysis

Top Keywords

electro-osmotic flow
16
magnetic field
16
resonance behavior
16
flow
11
electromagnetohydrodynamic emhd
8
electric field
8
lorentz force
8
spanwise direction
8
maxwell fluid
8
slip velocity
8

Similar Publications

Microfluidic fractionation of microplastics, bacteria and microalgae with induced-charge electro-osmotic eddies.

Anal Chim Acta

February 2025

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. Electronic address:

Background: Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications.

View Article and Find Full Text PDF

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Existence of a maximum flow rate in electro-osmotic systems.

J Chem Phys

November 2024

"Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark.

Article Synopsis
  • The study examines how friction between the wall and fluid influences electro-osmotic flows in a system of cations and neutral solvent particles.
  • It introduces a theoretical model predicting a maximum flow rate that depends on the relationship between wall-fluid friction and electrostatic screening length.
  • The results, validated through molecular dynamics simulations, show that applying the right slip boundaries leads to alignment between standard hydrodynamic theory and simulation data for nanoscale charged systems.
View Article and Find Full Text PDF

The dynamics of electro-osmotically generated flow of biological viscoelastic fluid in a cylindrical geometry are investigated in this paper. This flux is the result of walls contracting and relaxing sinusoidally in a magnetic environment. The blood's viscoelasticity and shear-thinning viscosity are the primary causes of its non-Newtonian characteristics.

View Article and Find Full Text PDF

Graphite-Based Bio-Mimetic Nanopores for Protein Sequencing and Beyond.

Small

January 2025

Computational Biotechnology, RWTH Aachen University, Worrignerweg 3, 52074, Aachen, Germany.

Protein sequencing using nanopores represents the next frontier in bio-analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid-state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a biomimetic graphite-based nanopore construction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!