Nanotechnology for Electronic Materials and Devices.

Nanomaterials (Basel)

Department of Physics, Chemistry and Biology (IFM), University of Linkoping, Campus Valla, Fysikhuset, SE-581 83 Linkoping, Sweden.

Published: September 2022

AI Article Synopsis

Article Abstract

The historical scaling down of electronics devices is no longer the main goal of the International Roadmap for Devices and Systems [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565597PMC
http://dx.doi.org/10.3390/nano12193319DOI Listing

Publication Analysis

Top Keywords

nanotechnology electronic
4
electronic materials
4
materials devices
4
devices historical
4
historical scaling
4
scaling electronics
4
electronics devices
4
devices longer
4
longer main
4
main goal
4

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Gold(I) N-heterocyclic carbene complexes show strong proapoptotic, antioxidant and anti-inflammatory effects in A2780 and endothelial cells.

Chem Biol Interact

January 2025

Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria. Electronic address:

A series of eight gold(I) N-heterocyclic carbene (NHC) complexes [Au(IMes)(HLn)] based on 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and 7-azaindole derivatives (HLn), where n = 1-8 for HL1 = 5-flouro-7-azaindole, HL2 = 5-bromo-7-azaindole, HL3 = 3-chloro-7-azaindole, HL4 = 3-iodo-7-azaindole, HL5 = 5-bromo-3-chloro-7-azaindole, HL6 = 5-bromo-3-iodo-7-azaindole, HL7 = 4-chloro-2-methyl-7-azaindole and HL8 = 7-azaindole, was prepared, characterised and studied for their in vitro anti-cancer and anti-inflammatory effects. The complexes showed significant cytotoxicity on human ovarian cancer cell lines (A2780, IC ≈ 8-19 μM and A2780R, IC ≈ 8-19 μM) and lowered toxicity in normal HaCat and MRC-5 cells. Cellular effects of the selected complexes 1 and 7 were evaluated in A2780 cells using flow cytometry.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Black soldier fly larvae (BSFL) have several advantages, such as rapid growth and sustainable production. The electrospinning encapsulation shows promise for encapsulating oils, as it does not use high temperatures, preventing degradation. This study analyzed the incorporation of oil (15, 30, and 45 % w/w) from BSFL into fibers by electrospinning using zein (20 and 25 % w/v).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!