Pyrite is an earth-abundant and low-cost material with a specific collection of properties including a low band gap and high absorption coefficient of solar light. These properties make pyrite a good choice in a wide variety of applications such as catalysts, batteries, and photovoltaic devices. A thin film composed of vertically aligned pyrite nano-rods was processed via a hydration-condensation method followed by subsequent aging and sulfurization. In this process, no ionic salt was used which resulted in a lower cost process with a lower level of impurities. Field emission scanning electron microscopy, X-ray diffraction, and Raman spectroscopy analyses were used to characterize the thin films in different steps of the process. The major impurity of the final thin films was the marcasite phase according to the Raman analysis which could be minimized by lowering sulfurizing time to about 60 min. In addition, after structural, electrical, and optical characterization of thin films, these layers' performances in a photovoltaic device were also examined. After deposition of a thin aluminum layer, Schottky-type solar cells of pyrite formed which were then illuminated to measure their current-voltage characteristics. The results show that a combination of low-cost materials and a low-cost preparation method is applicable for building future solar cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570830PMC
http://dx.doi.org/10.3390/ma15196946DOI Listing

Publication Analysis

Top Keywords

thin films
16
solar cells
8
thin
6
pyrite
5
characterization nano-rod
4
nano-rod arrays
4
arrays pyrite
4
pyrite thin
4
films
4
films prepared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!