In this study we present gas-phase fluorination as a method to create a thin LiF layer on LiLaZrTaO (LLZTO). We compared these fluorinated films with LiF films produced by RF-magnetron sputtering, where we investigated the interface between the LLZTO and the deposited LiF showing no formation of a reaction layer. Furthermore, we investigated the ability of this LiF layer as a protection layer against LiCO formation in ambient air. By this, we show that LiCO formation is absent at the LLZTO surface after 24 h in ambient air, supporting the protective character of the formed LiF films, and hence potentially enhancing the handling of LLZTO in air for battery production. With respect to the use within hybrid electrolytes consisting of LLZTO and a mixture of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), we also investigated the interface between the formed LiF films and a mixture of PEO+LiTFSI by X-ray photoelectron spectroscopy (XPS), showing decomposition of the LiTFSI at the interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570571PMC
http://dx.doi.org/10.3390/ma15196900DOI Listing

Publication Analysis

Top Keywords

lif films
12
lif
8
lif layer
8
investigated interface
8
lico formation
8
ambient air
8
formed lif
8
llzto
7
surface modification
4
modification llzto
4

Similar Publications

Elastin-like Recombinamers as a Biotechnological Platform for the Development of Cytokine-Functionalized Materials.

ACS Omega

November 2024

CBMA (Centre of Molecular and Environmental Biology)/ARNET (Aquatic Research Network) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are pleiotropic cytokines from the interkeukine-6 family, associated with several disorders, and present significant potential in biomedicine. However, their therapeutic use is highly constrained by factors such as short circulating half-life and narrow therapeutic window. The conjugation of cytokines with elastin-like recombinamers (ELR) holds the potential to circumvent these limitations due to the ability of self-assembling upon a thermal stimulus, remarkable biocompatibility, and ease of processing.

View Article and Find Full Text PDF

Ionic Liquid Additive Mitigating Lithium Loss and Aluminum Corrosion for High-Voltage Anode-Free Lithium Metal Batteries.

ACS Nano

November 2024

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China.

Concentrated electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) have been proposed as an effective Li-compatible electrolyte for anode-free lithium metal batteries (AFLMBs). However, these electrolytes suffer from severe aluminum corrosion at an elevated potential. To address this issue, we propose a binary ionic liquid (IL) electrolyte additive comprising the 1-methyl-1-butyl pyrrolidinium cation (Pyr), difluoro(oxalate)borate anion (DFOB), and difluorophosphate (POF) anion to mitigate the Li inventory loss and Al corrosion in 4 M LiFSI/DME electrolyte simultaneously.

View Article and Find Full Text PDF

Novel Two-Terminal Synapse/Neuron Based on an Antiferroelectric Hafnium Zirconium Oxide Device for Neuromorphic Computing.

Nano Lett

September 2024

School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China.

Functionally diverse devices with artificial neuron and synapse properties are critical for neuromorphic systems. We present a two-terminal artificial leaky-integrate-fire (LIF) neuron based on 6 nm HfZrO (HZO) antiferroelectric (AFE) thin films and develop a synaptic device through work function (WF) engineering. LIF neuron characteristics, including integration, firing, and leakage, are achieved in W/HZO/W devices due to the accumulated polarization and spontaneous depolarization of AFE HZO films.

View Article and Find Full Text PDF

Biopolymers such as carboxymethyl cellulose and hyaluronic acid are alternative substrates for conformable organic light-emitting diodes (OLEDs). However, drawbacks such as mechanical stress susceptibility can hinder the device's performance under stretched conditions. To overcome these limitations, herein, we developed a nanocomposite based on CMC/HA (carboxymethyl cellulose/hyaluronic acid) and synthetic Laponite, intending to improve the mechanical strength without compromising the film flexibility and transparency (transmittance >80%; 380-700 nm) as substrates for conformable OLEDs.

View Article and Find Full Text PDF

The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of NO exhibits a small shift in the {\tilde{\bf D}} band and tentative fine structures that have not yet been fully described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!