Elastic Properties of Open Cell Metallic Foams-Modeling of Pore Size Variation Effect.

Materials (Basel)

Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland.

Published: September 2022

Elastic properties of open-cell metallic foams are investigated in correlation with relative density and pore size variation. A variety of foam architectures, with open porosity above 70% (relative density below 0.30) and various pore size distributions, were modeled using Laguerre-Voronoi tessellations (LVT). The coefficient of pore volume variation, CV(V), was introduced to quantify the uniformity of designed structures and ranged between 0.5 to 2.1. Elastic behavior of the modeled foams to uniaxial compression along three orthogonal directions was analyzed using the finite element (FE) method. It is shown that Young's modulus and Poisson's ratio of open-cell metals is not solely a function of relative density (porosity) but the pore size variation as well. For similar porosity (approx. 74-98%), Young's modulus and Poisson's ratio may be reduced by approx. 25-30% and 10-25%, respectively, when CV(V) increases from 0.5 to 2.1. Furthermore, the incorporation of a relationship between Young's modulus and the coefficient of pore volume variation to the Gibson-Ashby model is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572566PMC
http://dx.doi.org/10.3390/ma15196818DOI Listing

Publication Analysis

Top Keywords

pore size
16
size variation
12
relative density
12
young's modulus
12
elastic properties
8
coefficient pore
8
pore volume
8
volume variation
8
modulus poisson's
8
poisson's ratio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!