The grain structure of the selective laser melting additive manufactured parts has been shown to be heterogeneous and spatially non-uniform compared to the traditional manufacturing process. However, the complex formation mechanism of these unique grain structures is hard to reveal using the experimental method alone. In this study, we presented a high-fidelity 3D numerical model to address the grain growth mechanisms during the selective laser melting of 316 stainless steel, including two heating modes, i.e., conduction mode and keyhole mode melting. In the numerical model, the powder-scale thermo-fluid dynamics are simulated using the finite volume method with the volume of fluid method. At the same time, the grain structure evolution is sequentially predicted by the cellular automaton method with the predicted temperature field and the as-melted powder bed configuration as input. The simulation results agree well with the experimental data available in the literature. The influence of the process parameters and the keyhole and keyhole-induced void on grain structure formation are addressed in detail. The findings of this study are helpful to the optimization of process parameters for tailoring the microstructure of fabricated parts with expected mechanical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572416PMC
http://dx.doi.org/10.3390/ma15196800DOI Listing

Publication Analysis

Top Keywords

selective laser
12
laser melting
12
grain structure
12
grain growth
8
stainless steel
8
numerical model
8
process parameters
8
grain
6
three-dimensional numerical
4
numerical simulation
4

Similar Publications

The aims of this study were twofold: first, to investigate the surface roughness of different abutment materials prepared using various manufacturing methods; and, second, to evaluate colonization by Streptococcus mutans and Candida albicans according to abutment material and manufacturing method. Six material/manufacturing method combinations were investigated in this study, namely chromium-cobalt (Cr-Co) (prepared using casting, milling, and laser sintering) and titanium, zirconia, and anodized titanium (all prepared using milling); titanium (stock) abutments were used as the control group. Surface roughness of seven specimens from each group was evaluated using atomic force microscopy and scanning electron microscopy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 6.2 million Americans aged 65 and older, particularly women. Along with AD's main hallmarks (formation of β-amyloid plaques and tau neurofibrillary tangles), there are vascular alterations that occurs in AD pathology.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), a local cancer treatment using photosensitizers, has been reported to enhance antitumor immune responses by inducing immunogenic cell death. Although several studies have demonstrated the synergistic antitumor effects of PDT and immune checkpoint blockage (ICB), the detailed underlying mechanisms remain poorly understood. In this study, we investigated the immunological effects of PDT with talaporfin (Tal-PDT), a clinically approved photosensitizer, using bilateral tumor-bearing mouse models.

View Article and Find Full Text PDF

Rheology modifiers (RMs) are polymeric molecules providing rheological control of formulations, which are important in product application, shelf-life, and aesthetic perception. Bio-derived polyethylene glycol (PEG)-based RMs thicken formulations through nonionic-associative thickening where at least two hydrophobic end groups from a RM molecule interact with other hydrophobic groups of other RM molecules or ingredients in the formulation to form an associative network. We report a comprehensive two-dimensional liquid chromatography (2D-LC) separation of partly bio-derived PEG-based RMs in size exclusion chromatography (SEC) × reversed-phase liquid chromatography (RPLC) mode for the separation of RM components based on both molecular weight distribution and end group hydrophobe distribution.

View Article and Find Full Text PDF

Introduction: Surgical site infection (SSI) after lower extremity (LE) bypass surgery is associated with longer length of stay, higher hospital cost, increased morbidity, and even graft loss. Silver impregnated dressings have been used by other surgical subspecialties to decrease SSI with reported success. The National Surgical Quality Improvement Program (NSQIP) published a national expected rate of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!