Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lightweight structural alloys have broad application prospects in aerospace, energy, and transportation fields, and it is crucial to understand the hot deformation behavior of novel alloys for subsequent applications. The deformation behavior and microstructure evolution of a new Al-Zn-Mg-Li-Cu alloy was studied by hot compression experiments at temperatures ranging from 300 °C to 420 °C and strain rates ranging from 0.01 s to 10 s. The as-cast Al-Zn-Mg-Li-Cu alloy is composed of an α-Al phase, an AlCu phase, a T phase, an η phase, and an η' phase. The constitutive relationship between flow stress, temperature, and strain rate, represented by Zener-Hollomon parameters including Arrhenius terms, was established. Microstructure observations show that the grain size and the fraction of DRX increases with increasing deformation temperature. The grain size of DRX decreases with increasing strain rates, while the fraction of DRX first increases and then decreases. A certain amount of medium-angle grain boundaries (MAGBs) was present at both lower and higher deformation temperatures, suggesting the existence of continuous dynamic recrystallization (CDRX). The cumulative misorientation from intragranular to grain boundary proves that the CDRX mechanism of the alloy occurs through progressive subgrain rotation. This paper provides a basis for the deformation process of a new Al-Zn-Mg-Li-Cu alloy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573753 | PMC |
http://dx.doi.org/10.3390/ma15196769 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!