Ultrafast Dynamics of Different Phase States GeSbTe Film Induced by a Femtosecond Laser Pulse Irradiation.

Materials (Basel)

Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Published: September 2022

A femtosecond laser could realize a high transition rate of the phase change material (PCM), and the properties of the amorphous and the crystalline GeSbTe (GST) induced by a femtosecond laser were studied, which was one of the candidates among the PCMs. However, the characteristics of the intermediate phase states in reversible phase transitions were also important and helpful to explore the mechanisms of the phase transitions. In this paper, the ultrafast dynamics of amorphous, crystalline face-centered-cubic (FCC), and hexagonal-close-packed (HCP) states were investigated using a femtosecond laser pulse excitation through a reflective-type pump-probe technique, obtained by annealing at certain temperatures, and verified using X-ray diffraction (XRD) and the Raman spectrum. It was found that as the annealing temperature increased, the electron of the GST films could be excited more easily, while the ablation threshold decreased. Due to annealing, the structure of bonding was changed for different phase states, which resulted in the decrease in the band gap of the films. In addition, it was hard for the intermediate state films to transit to the amorphous structure state via the femtosecond laser, and the crystallization would be enhanced, while the crystalline HCP structures of GST could be directly and easily changed to the amorphous state by a pulse, which resulted from the non-thermal phase change caused by the excited electron.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572123PMC
http://dx.doi.org/10.3390/ma15196760DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
20
phase states
12
ultrafast dynamics
8
induced femtosecond
8
laser pulse
8
phase change
8
amorphous crystalline
8
phase transitions
8
phase
7
femtosecond
5

Similar Publications

We investigate the ultrafast electron correlation effects during non-sequential double ionization (NSDI) of argon subjected to a combined femtosecond field composed of counter-rotating two-color circularly polarized (TCCP) pulse laser using a 3D classical ensemble model (CEM). Our simulation results reveal that manipulation of the carrier-envelope phase (CEP) of the external driving field modulates the dynamical behavior of the two electrons, resulting in a notable sensitivity of their momentum distribution to the relative phase of two components of the counter-rotating TCCP field. Through inversion analysis, we uncover the capability to direct electrons toward a single direction, thereby facilitating focused ion-electron collisions on the attosecond timescale.

View Article and Find Full Text PDF

This paper employed a two-color double-pulse femtosecond laser (TDFL) technology for surface processing of carbon fiber reinforced polymers (CFRP). By exploring the changes in ablation thresholds for resin and carbon fiber under varying wavelengths and pulse numbers, optimal wavelength combinations were identified. Adjustments to processing parameters and pulse delay enabled precise removal of the CFRP surface, targeting resin while causing no damage to the underlying carbon fibers.

View Article and Find Full Text PDF

The interaction between ultrafast, tightly focused lasers and materials has garnered significant interest owing to its distinctive properties. In this study, we present a versatile methodology for the fabrication of tunable plasmonic nanostructures by employing a disordered gold nanoisland-dielectric-metal configuration, achieved through femtosecond laser printing. By reshaping the gold nanoislands and reconfiguring them into nanograting-like structures, the orientation of these nanostructures is influenced by the polarization of the femtosecond laser light, leading to controllable plasmon resonance and polarization-sensitive color display.

View Article and Find Full Text PDF

The fiber Bragg grating (FBG) is fabricated by the femtosecond laser writing technique with a plane-by-plane (Pl-by-Pl) method in the double-cladding fiber (DCF). The refractive index modified (RIM) region formed by this method is 12 μm × 8 μm in size. Due to the Pl-by-Pl method, high-order Bragg resonances with reflectance greater than 99% can be achieved.

View Article and Find Full Text PDF

High-resolution optical diagnostics in the short wavelength infrared (SWIR II) region have gained significant attention in medical research, showing great potential for tissue spectroscopy and visualization due to the region's low water absorption and scattering coefficients. However, high-beam-quality sources covering an entire spectral range are limited. This paper presents the development of a femtosecond Cr:ZnSe laser with a 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!