The use of diverse metal nanoparticles (MNPs) in a wide range of commercial products has led to their co-existence in the aqueous environment. The current study explores the dispersion and aggregation fate of five prominent MNPs (silver, copper, iron, nickel, and titanium), in both their individual and co-existing forms. We address a knowledge gap regarding their environmental fate under turbulent condition akin to flowing rivers. We present tandem analytical techniques based on dynamic light scattering, ultraviolet-visible spectroscopy, and inductively coupled plasma atomic emission spectroscopy for discerning their dispersion behavior under residence times of turbulence, ranging from 0.25 to 4 h. The MNPs displayed a multimodal trend for dispersion and aggregation behavior with suspension time in aqueous samples. The extent of dispersion was variable and depended upon intrinsic properties of MNPs. However, the co-existing MNPs displayed a dominant hetero-aggregation effect, independent of the residence times. Further research with use of real-world environmental samples can provide additional insights on the effects of sample chemistry on MNPs fate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572943PMC
http://dx.doi.org/10.3390/ma15196733DOI Listing

Publication Analysis

Top Keywords

dispersion aggregation
12
aggregation fate
8
individual co-existing
8
metal nanoparticles
8
residence times
8
mnps displayed
8
mnps
6
dispersion
5
fate
4
fate individual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!