The influence of TiO addition on the high-temperature electrochemical characteristics of stainless-steel-based materials was investigated by means of differential potential measurement, electrochemical polarization and impedance spectroscopy. A new three-electrode approach was utilized which incorporated a liquid aluminum alloy AlSi7Mg0.3 as the reference electrode, barium carbonate BaCO as the solid-state electrolyte, and stainless steel or a stainless steel-TiO composite as the working electrode. The potential differences between the steel-based working electrodes and the liquid-aluminum-alloy reference electrode were measured for 85 h throughout the whole experiment, including the heating and cooling period. The experiments were performed at 850 °C. The determination of the high-temperature open circuit potential () in reference to the liquid aluminum alloy was carried out via potentiodynamic polarization. The polarization-related changes in the impedance characteristics were evaluated by the correlation of impedance responses before and after the polarization. The addition of 40 vol% TiO resulted in a reduction in the potential of the steel-TiO composite and led to the formation of a more uniform electrode-electrolyte interface. The reaction products on the surface of the working electrodes were investigated by means of SEM/EDS and XRD. They consisted of mixed oxides within the Fe-O, Ba-Fe-O and Ba-Cr-O systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572515PMC
http://dx.doi.org/10.3390/ma15196723DOI Listing

Publication Analysis

Top Keywords

steel-tio composite
12
aluminum alloy
12
stainless steel
8
steel stainless
8
stainless steel-tio
8
liquid aluminum
8
reference electrode
8
working electrodes
8
electrochemical studies
4
stainless
4

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Background: S. haematobium is a recognized carcinogen and is associated with squamous cell carcinoma of the bladder. Its association with high-risk(HR) human papillomavirus (HPV) persistence, cervical pre-cancer and cervical cancer incidence has not been fully explored.

View Article and Find Full Text PDF

Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.

View Article and Find Full Text PDF

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!