The Effect of the Displacement Amplitude on the Fretting Wear of GCr15 Steel with a TiC Coating.

Materials (Basel)

Guangdong Engineering Research Centre for Strengthen Grinding and Micro/Nano High-Performance Machining, Guangzhou University, Guangzhou 510006, China.

Published: September 2022

In the present paper, the effect of mechanical ball milling time on the fretting wear of GCr15 steel balls at different displacement amplitudes is investigated. TiC powder coating was fabricated on the surface of GCr15 steel balls using various process times, and the fretting wear tests were conducted on an AISI 52100 steel disk with the applied force of 80 N. Additionally, various displacement amplitudes (10 μm, 20 μm, and 60 μm) were selected. Specimen attributes and wear scars were characterized using an inverted metallographic microscope, a microhardness tester, an X-ray diffractometry analyzer, a white light interferometer, and a scanning electron microscope. The results showed that thick and continuous coatings could be obtained at the milling time of 18 h. The specimens processed for a longer milling time demonstrated better fretting wear resistance, which we attribute to higher microhardness of the surface layer. The coefficient of friction and wear volume of specimens at each different displacement amplitude significantly decreased with increasing milling time. As the displacement amplitude increased, the three fretting states were: partial slip coordinated by elastic deformation; partial slip state coordinated by plastic deformation; and gross slip condition. Our observations indicate that mechanical ball milling could be an efficient approach to improve the fretting wear resistance of GCr15 steel balls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573600PMC
http://dx.doi.org/10.3390/ma15196628DOI Listing

Publication Analysis

Top Keywords

fretting wear
20
gcr15 steel
16
milling time
16
displacement amplitude
12
steel balls
12
wear gcr15
8
mechanical ball
8
ball milling
8
displacement amplitudes
8
μm μm
8

Similar Publications

Detailed Analysis of the Debris-Fretting Damage Areas on Coated Fuel Cladding.

Materials (Basel)

January 2025

Centrum Výzkumu Řež s.r.o., Hlavní 130, 250 68 Husinec-Řež, Czech Republic.

Fuel failure caused by fretting damage to cladding remains a relevant issue despite decades of research and development aimed at enhancing the physical parameters of fuel. This paper presents the results of experiments conducted at the Research Centre Řež on Zr-1%Nb alloy tube specimens covered with protective coatings made of chromium (Cr) and nitrogen (N) compounds. The experiments involved debris-fretting tests under dry conditions at room temperature as well as microscopic measurements of groove depths.

View Article and Find Full Text PDF

The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.

View Article and Find Full Text PDF

Effect of Ball Burnishing on Fretting at Elevated Temperatures.

Materials (Basel)

December 2024

Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Powstancow Warszawy 8 Street, 35-959 Rzeszow, Poland.

The influence of ball burnishing on friction and wear at elevated temperatures under fretting conditions has not yet been reported. Fretting experiments were conducted using the Optimol SRV5 tester (Optimol Instruments, Munich, Germany) under dry gross fretting conditions. A ball of WC ceramic was pressed against a disc from the titanium alloy Ti6Al4V.

View Article and Find Full Text PDF

Modular hip implants are a clinically successful and widely used treatment for patients with arthritis. Despite ongoing retrieval studies the understanding of the fundamental physico-chemical mechanisms of friction and wear within the head-taper interface is still limited. Here, we Raman-spectroscopically analyze structural features of the biotribological material which is formed within the taper joint between Ti6Al4V and low-carbon cobalt alloy or high-nitrogen steel surfaces in in vitro gross-slip fretting corrosion tests with bovine calf serum.

View Article and Find Full Text PDF

The nickel-based alloy Inconel 600, strengthened by solution treatment, finds extensive application as a heat exchange pipe material in steam generators within nuclear power plants, owing to its exceptional resistance to high-temperature corrosion. However, fretting corrosion occurs at the contact points between the pipe and support frame due to gas-liquid flow, leading to wear damage. This study investigates the fretting wear behavior and damage mechanism of the nickel-based alloy Inconel 600 and 304 stainless steel friction pairs under point contact conditions in a water environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!