During Baeyer-Villiger (BV) oxidation of cyclohexanone with peracids, oligo(ε-caprolactone) (OCL) may be formed. In this work, a two-step one-pot method for the synthesis of OCL involving the BV oxidation of cyclohexanone with peracids and then oligomerization of the resulting ε-caprolactone has been developed. The process was carried out in two solvents: toluene and cyclohexane. Based on the studies, it was determined that the increased temperature (45-55 °C) and the longer reaction time (4 h) favor the formation of OCls. Among the tested peracids (perC-C), perC turned out to be the most effective oxidant. Moreover, the obtained oligomers were characterized by means of NMR, MS MALDI TOF, and TGA analyses, which made it possible to determine the structure of oligomers (length and terminal groups of the chains). Additionally, the oligomers obtained after the distillation of the reaction mixture were analyzed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571306 | PMC |
http://dx.doi.org/10.3390/ma15196608 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
Electrocatalytic oxidation of cyclohexanol/cyclohexanone in water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCoO/CeO is developed to enable the electrooxidation of cyclohexanol to AA with a 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China.
Hydrogen peroxide (HO) is an important chemical in synthetic chemistry with huge demands. Photocatalytic synthesis of HO via oxygen reduction and water oxidation reactions (ORR and WOR) is considered as a promising and desirable solution for on-site applications. However, the efficiency of such a process is low due to the poor solubility of molecular oxygen and the rapid reverse reaction of hydroxyl radicals (OH) with hydrogen atoms (H).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Adiponitrile (ADN) has wide applications, especially in the polymer industry. With the substantial and increasing global demand for ADN, effective production of ADN using safe and abundant starting materials is highly desirable but very challenging. Herein, we discovered that CuBr, combined with 1,10-phenanthroline (phen), could effectively promote the ammoxidation reaction of cyclohexanone to ADN with a yield of >99% using aqueous ammonia as the nitrogen source and O as the terminal oxidant under mild reaction conditions (80 °C, 5 atm O).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Tsinghua University, 100084, Beijing, China.
Selective electrocatalytic hydrogenation (ECH) of phenol is a sustainable route to produce cyclohexanone, an industrially important feedstock for polymer synthesis. However, attaining high selectivity and faradaic efficiency (FE) for cyclohexanone remain challenging, owning to over-hydrogenation of phenol to cyclohexanol and competition of hydrogen evolution reaction (HER). Herein, by employing hydrogen spillover effect, we modulate adsorbed hydrogen species (H) coverage on Pt surface via migration to TiO in an anatase TiO-supported Pt catalyst.
View Article and Find Full Text PDFChemistry
December 2024
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
Self-assembly synthesis of mixed-ligand (silsesquioxane/acetate) complex allows to isolate record high nuclear copper(II) Cu-cage (1). In the presence of two additional sodium ions, a unique molecular architecture, with triple combination of ligands (cyclic and acyclic silsesquioxanes as well as acetates), has been formed. The structure was established by single-crystal X-ray diffraction based on the use of synchrotron radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!