Flexible Magnetic Metasurface with Defect Cavity for Wireless Power Transfer System.

Materials (Basel)

Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.

Published: September 2022

In this paper, we present a flexible magnetic metamaterial structure for enhancing the efficiency of wireless power transfer (WPT) systems operating at 13.56 MHz. The metasurface between transmitter (Tx) and receiver (Rx) coils of the WPT system is constructed of a 3 × 5 metamaterial unit cell array with a total size of 150 × 300 mm. Most metamaterial structures integrated into WPT systems are in planar configurations with a rigid substrate, which limits practical applications. The proposed metasurface is fabricated on an FR-4 substrate with a thin thickness of 0.2 mm; therefore, it can be bent with radii greater than 80 mm. A defect cavity is formed in the non-homogeneous metasurface by controlling the resonant frequency of the unit cell with an external capacitor. Simulation and measurement results show that the efficiency of the WPT system is significantly enhanced with metasurfaces. The performance of the WPT system can also be optimized with suitable bend profiles of metasurfaces. This proposed flexible metasurface could be widely applied to WPT systems, especially asymmetric, bendable, or wearable WPT systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570919PMC
http://dx.doi.org/10.3390/ma15196583DOI Listing

Publication Analysis

Top Keywords

wpt systems
16
wpt system
12
flexible magnetic
8
defect cavity
8
wireless power
8
power transfer
8
unit cell
8
wpt
7
metasurface
5
magnetic metasurface
4

Similar Publications

Methodology for Hydrogen-Assisted Fatigue Testing Using In Situ Cathodic Charging.

Materials (Basel)

January 2025

Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.

With hydrogen being a promising candidate for many future and current energy applications, there is a need for material-testing solutions, which can represent hydrogen charging under superimposed mechanical loading. Usage of high purity gaseous hydrogen under high pressure in commercial solutions entails huge costs and also potential safety concerns. Therefore, a setup was developed utilizing a customized electrochemical charging cell built into a dynamic testing system.

View Article and Find Full Text PDF

When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring the high accuracy and long endurance of the inertial system. Traditional diagnostic models often encounter challenges in terms of reliability and accuracy, for example, difficulties in feature extraction, high computational cost, and long training time.

View Article and Find Full Text PDF

With the emergence of the Internet of Things (IoT), the demand on the wireless power supply to consumer electronics simultaneously requires much more location freedom, ease of use, and performance with wireless communications. In this paper, an unenclosed quasi-static cavity resonator (QSCR) constructed with metallic strips and the design method are proposed and theoretically analyzed. This unenclosed QSCR has a simple structure, which benefits the wireless charging for portable/wearable electronics and smart appliances in the office and home environment.

View Article and Find Full Text PDF

Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants.

IEEE J Solid-State Circuits

November 2024

Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.

Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.

View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!