Obtaining H energy from HO using the most abundant solar radiation is an outstanding approach to zero pollution. This work focuses on studying the effect of Co doping and calcination on the structure, morphology, and optical properties of spin-coated SnO films as well as their photoelectrochemical (PEC) efficiency. The structures and morphologies of the films were investigated by XRD, AFM, and Raman spectra. The results confirmed the preparation of SnO of the rutile phase, with crystallite sizes in the range of 18.4-29.2 nm. AFM showed the granular structure and smooth surfaces having limited roughness. UV-Vis spectroscopy showed that the absorption spectra depend on the calcination temperature and the Co content, and the films have optical bandgap () in the range of 3.67-3.93 eV. The prepared samples were applied for the PEC hydrogen generation after optimizing the sample doping ratio, using electrolyte (HCl, NaSO, NaOH), electrode reusability, applied temperature, and monochromatic illumination. Additionally, the electrode stability, thermodynamic parameters, conversion efficiency, number of hydrogen moles, and PEC impedance were evaluated and discussed, while the SnO films were used as working electrodes and platinum sheet as an auxiliary or counter electrode (2-electrode system) and both were dipped in the electrolyte. The highest photocurrent (21.25 mA/cm), number of hydrogen moles (20.4 mmol/h.cm), incident photon-to-current change efficiency (6.892%@307 nm and +1 V), and the absorbed photon-to-current conversion efficiency (4.61% at ~500 nm and +1 V) were recorded for the 2.5% Co-doped SnO photoanode that annealed at 673 K.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572947 | PMC |
http://dx.doi.org/10.3390/ma15196534 | DOI Listing |
ACS Nano
January 2025
Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
School of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol, U.K.
Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDFACS Omega
December 2024
UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, United Kingdom.
Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
The molecular-beam epitaxial (MBE) growth of III-O and IV-O materials (, GaO, InO, and SnO) is known to be reaction-limited by complex 2-step kinetics and the desorption of volatile suboxides (, GaO, InO, SnO). We find that the different surface reactivities of suboxides and respective elements (, Ga, In, Sn) with active oxygen define the film-growth-windows (FGWs) and suboxide-formation-windows (SFWs) of III-O and IV-O materials, respectively. To generalize, we provide elementary reaction pathways and respective Gibbs energies to form binary III-O, III-Se, IV-O, and IV-Se ground-states as well as their subcompounds during their MBE growth.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Solid-State Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original technology was developed, and ceramic targets were made from powders of Sn-Sb-O, Sn-Sb-Dy-O, and Sn-Sb-Dy-Ag-O systems synthesized by the sol-gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets, followed by technological annealing at various temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!