Numerous studies have demonstrated the various properties of micronized adipose tissue (MAT), including angiogenic, anti-inflammatory, and regenerative activities, which can be helpful in wound healing. This exploratory clinical trial aimed to report the efficacy and safety of MAT niche for treating diabetic foot ulcers. Twenty subjects were randomly divided into MAT niche treatment ( = 10) and control groups ( = 10). All patients were followed up weekly for 16 weeks. We evaluated the efficacy of the MAT niche treatment by assessing the (1) reduction in wound area after 4 weeks and (2) percentage of patients who achieved complete wound closure after 16 weeks. All possible adverse events were recorded. The wound area was reduced by 4.3 ± 1.0 cm in the treatment group and by 2.0 ± 1.1 cm in the control group ( = 0.043). Complete wound healing was achieved after 16 weeks in eight out of 10 patients (80%) in the treatment group and three out of six (50%) in the control group ( = 0.299). No serious adverse events related to MAT niche treatment were observed. Although the present study's findings do not support the use of this therapy to treat foot ulcers of patients with diabetes owing to the small number of patients included and the absence of statistical significance, the results of this pilot preliminary study are promising in that MAT niche autografts may offer the possibility of a simple and effective treatment for diabetic ulcers. Further follow-up studies with a larger number of patients are required to validate our findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571615PMC
http://dx.doi.org/10.3390/jcm11195887DOI Listing

Publication Analysis

Top Keywords

mat niche
20
foot ulcers
12
niche treatment
12
micronized adipose
8
adipose tissue
8
diabetic foot
8
wound healing
8
wound area
8
complete wound
8
adverse events
8

Similar Publications

Background And Aims: Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.

View Article and Find Full Text PDF

Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium Synechococcus OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph Chloroflexus MS-CIW-1 (Chfl MS-1).

View Article and Find Full Text PDF

Ascites microenvironment conditions the peritoneal pre-metastatic niche to promote the implantation of ovarian tumor spheroids: Involvement of fibrinogen/fibrin and αV and α5β1 integrins.

Exp Cell Res

August 2024

Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France. Electronic address:

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle.

View Article and Find Full Text PDF

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico.

View Article and Find Full Text PDF

Background: Recently, micronized adipose tissue (MAT) grafts have shown promising results in wound healing, including diabetic ulcers.

Objective: To assess the possibility of using 3D printed MAT niche grafts in the management of skin and soft tissue defects resulting from non-melanoma skin cancer (NMSC) resections.

Materials And Methods: A retrospective feasibility study was conducted on patients with skin and soft tissue defects resulting from NMSC resections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!