: To create a novel preoperative prediction model based on a deep learning algorithm to predict neoplasm T staging and grading in patients with upper tract urothelial carcinoma (UTUC). : We performed a retrospective cohort study of patients diagnosed with UTUC between 2001 and 2012 at our institution. Five deep learning algorithms (CGRU, BiGRU, CNN-BiGRU, CBiLSTM, and CNN-BiLSTM) were used to develop a preoperative prediction model for neoplasm T staging and grading. The Matthews correlation coefficient (MMC) and the receiver-operating characteristic curve with the area under the curve (AUC) were used to evaluate the performance of each prediction model. : The clinical data of a total of 884 patients with pathologically confirmed UTUC were collected. The T-staging prediction model based on CNN-BiGRU achieved the best performance, and the MMC and AUC were 0.598 (0.592-0.604) and 0.760 (0.755-0.765), respectively. The grading prediction model [1973 World Health Organization (WHO) grading system] based on CNN-BiGRU achieved the best performance, and the MMC and AUC were 0.612 (0.609-0.615) and 0.804 (0.801-0.807), respectively. The grading prediction model [2004 WHO grading system] based on BiGRU achieved the best performance, and the MMC and AUC were 0.621 (0.616-0.626) and 0.824 (0.819-0.829), respectively. : We developed an accurate UTUC preoperative prediction model to predict neoplasm T staging and grading based on deep learning algorithms, which will help urologists to make appropriate treatment decisions in the early stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571440 | PMC |
http://dx.doi.org/10.3390/jcm11195815 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!