The cardiac sodium channel (Nav1.5) controls cardiac excitability by triggering the action potential of cardiac myocytes and controlling electric impulse transmission. However, it has also been associated with arrhythmogenic cardiomyopathies. Accordingly, genetic variants in that result in loss of function of Nav1.5 are associated with inherited arrhythmia syndromes, which are caused by reduced cardiac excitability, particularly Brugada syndrome (BrS) as well as arrhythmogenic right ventricular cardiomyopathy (ARVC). We report a novel pathogenic variant being associated with BrS overlapping with ARVC, as well as disease progression with a previously reported variant being associated with a phenotype of BrS and conduction system disorder in two unrelated families.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572161PMC
http://dx.doi.org/10.3390/jcm11195625DOI Listing

Publication Analysis

Top Keywords

brugada syndrome
8
unrelated families
8
cardiac excitability
8
variant associated
8
associated
5
syndrome associated
4
associated heterozygous
4
heterozygous variants
4
variants unrelated
4
cardiac
4

Similar Publications

Cardiac Implications in Dravet Syndrome: Can Electrocardiogram and Echocardiography Detect Hidden Risks?

Pediatr Neurol

January 2025

Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).

View Article and Find Full Text PDF

Background: Placement of right precordial leads in higher intercostal spaces (EEP-ECG) improves the detection of Brugada Syndrome (BrS). Given the potential difficulty of lead placement and the transient nature of BrS ECG patterns, we developed a model to predict EEP-ECG from a standard 12‑lead ECG.

Objective: To create and validate a model that derives EEP-ECG leads from a standard 12‑lead ECG.

View Article and Find Full Text PDF

Brugada syndrome (BrS) is an inherited arrhythmogenic disorder characterized by distinct electrocardiographic patterns and an increased risk of sudden cardiac death due to ventricular arrhythmias. Effective management of BrS is essential, particularly for high-risk patients with recurrent arrhythmias. While implantable cardioverter-defibrillator (ICD) is effective in terminating life-threatening arrhythmias, it does not prevent arrhythmia onset and can lead to complications such as inappropriate shocks.

View Article and Find Full Text PDF

Advances in genetic diagnosis and therapy of hereditary heart disease: a bibliometric review from 2004 to 2024.

Front Med (Lausanne)

January 2025

Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.

Hereditary heart disease (HHD) is a series of cardiac disorders associated with monogenic or polygenic abnormalities and is one of the leading causes of sudden death, particularly in young adults. The updated European Cardiology guideline for cardiomyopathies provides the first comprehensive summary of genotyping, imaging, and therapy recommendations for inherited cardiomyopathies, but still lacks a comprehensive discussion of research advances and future trends in genetic diagnosis and therapy of HHD. Our research aims to fill this gap.

View Article and Find Full Text PDF

Which Brugada patient deserves continuous ECG monitoring through implantable loop recorder? An evidence update.

J Cardiovasc Med (Hagerstown)

February 2025

Division of Cardiology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS).

Brugada syndrome (BrS) is a genetic condition that increases the risk of life-threatening arrhythmias, which can result in sudden cardiac death (SCD). Implantable loop recorders (ILRs) have become a key tool in managing patients with unexplained syncope, and guidelines advise their use in individuals with recurrent, unexplained syncope or palpitations. However, the role of ILRs in inherited arrhythmic conditions like BrS remains a topic of debate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!