Porcine-induced pluripotent stem cells (piPSCs) are of great significance to animal breeding and human medicine; however, an important problem is that the maintenance of piPSCs mainly depends on exogenous expression of pluripotent transcription factors (TFs), and germline transmission-competent piPSCs have not yet been successfully established. In this study, we explore the defect of epigenetic reprogramming during piPSCs formation, including chromatin accessibility, DNA methylation, and imprinted gene expression, with high-throughput sequencing (ATAC-seq, WGBS, RNA-seq, and Re-seq) methods. We found the somatic features were successfully silenced by connecting closed chromatin loci with downregulated genes, while DNA methylation has limited effects on somatic silence. However, the incomplete chromatin remodeling and DNA demethylation in pluripotency genes hinder pluripotent activation, resulting in the low expression of endogenous pluripotency genes. In addition, the expression of potential imprinted genes was abnormal, and many allelic-biased expressed genes in porcine embryonic fibroblasts (PEFs) were erased, accompanied by establishment of new allelic-biased expressed genes in piPSCs. This study reveals the aberrant epigenetic reprogramming during dox-dependent piPSCs formation, which lays the foundation for research of porcine-iPSC reprogramming and genome imprinting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570186 | PMC |
http://dx.doi.org/10.3390/ijms231911941 | DOI Listing |
Health Sci Rep
January 2025
Medical Oncology Healthcare Global Bangalore India.
Background And Aims: Sensitivity to immune checkpoint inhibitor (ICI) therapy depends in part on the genetic and epigenetic makeup of cancer cells, and CD8 T-lymphocytes that mediate immune responses. Epigenetics are heritable reversible changes in gene expression that occur without any changes in the nuclear DNA sequence or DNA copy number.
Primary Objective: i.
Ageing Res Rev
January 2025
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment.
View Article and Find Full Text PDFNat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Biosciences, College of Life & Environmental Sciences, University of Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!