Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570369PMC
http://dx.doi.org/10.3390/ijms231911692DOI Listing

Publication Analysis

Top Keywords

mda5-mediated type
12
coronavirus nonstructural
8
nonstructural protein
8
melanoma differentiation-associated
8
differentiation-associated gene
8
type interferon
8
ifn response
8
plpro domain
8
type ifn
8
nsp3
7

Similar Publications

Chicken GSDME, a major pore-forming molecule responsible for RNA virus-induced pyroptosis in chicken.

J Virol

November 2024

National Key Laboratory of Veterinary Public Health Security, Beijing, China.

Pyroptosis is an inflammatory type of programmed cell death that mainly depends on the formation of plasma membrane pores by Gasdermin D (GSDMD) in mammals. However, the genetic deficiency of GSDMD in chicken renders avian pyroptosis elusive. Here, we show that infection of DF-1 cells (a chicken cell line) with infectious bursal disease virus (IBDV) induced cell death associated with chicken GSDME (chGSDME) cleavage, and so did cells with other RNA virus (VSV, AIV, or NDV) infections, indicating a broad role of chGSDME in RNA virus-induced pyroptosis in chicken.

View Article and Find Full Text PDF

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis.

View Article and Find Full Text PDF

Mammalian reovirus µ1 protein attenuates RIG-I and MDA5-mediated signaling transduction by blocking IRF3 phosphorylation and nuclear translocation.

Mol Immunol

June 2024

Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China. Electronic address:

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses.

View Article and Find Full Text PDF

Histone H1.2 is a member of the linker histone family, which plays extensive and crucial roles not only in the regulation of chromatin dynamics, cell cycle, and cell apoptosis, but also in viral diseases and innate immunity response. Recently, it was discovered that H1.

View Article and Find Full Text PDF

Atypical activation of the RNA sensor MDA5 by hepatitis C virus.

FEBS J

March 2024

Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.

Hepatitis C virus (HCV) is a significant human pathogen that can cause a number of serious diseases including chronic inflammation of the liver, cirrhosis, and hepatocellular carcinoma. A key enzyme in the HCV life cycle is the nonstructural protein 5B (NS5B), which functions as an RNA-dependent RNA polymerase (RdRp) responsible for replicating the viral RNA genome. In their recent study, Dansako and colleagues showed that HCV NS5B induces type I interferon via activation of the RNA receptor MDA5, an activity that was dependent on the RdRp enzymatic activity but independent of viral RNA replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!