Aging is associated with testicular morphological and functional alterations, but the underlying molecular mechanisms and the impact of physical exercise are poorly understood. In this study, we examined the effects of age and lifelong moderate-intensity exercise on rat testis. Mature adults (35 weeks) and middle-aged (61 weeks) Wistar Unilever male rats were maintained as sedentary or subjected to a lifelong moderate-intensity treadmill training protocol. Testis weight and histology, mitochondrial biogenesis and function, and proteins involved in protein synthesis and stress response were evaluated. Our results illustrate an age-induced testicular atrophy that was associated with alterations in stress response, and mitochondrial biogenesis and function. Aging was associated with increased testicular levels of heat shock protein beta-1 (HSP27) and antioxidant enzymes. Aging was also associated with decreased mRNA abundance of the nuclear respiratory factor 1 (), a key transcription factor for mitochondrial biogenesis, which was accompanied by decreased protein levels of the oxidative phosphorylation system (OXPHOS) complexes subunits in the testes of older animals. On the other hand, exercise did not protect against age-induced testicular atrophy and led to deleterious effects on sperm morphology. Exercise led to an even more pronounced decrease in the mRNA levels in testes of both age groups and was associated with decreased mRNA abundance of other mitochondrial biogenesis markers and decreased protein levels of OXPHOS complexes subunits. Lifelong moderate-intensity exercise training was also associated with an increase in testicular oxidative stress markers and possibly with reduced translation. Together, our results indicate that exercise did not protect against age-induced testicular atrophy and was not associated with beneficial changes in mitochondria and stress response, further activating mechanisms of protein synthesis inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570257PMC
http://dx.doi.org/10.3390/ijms231911619DOI Listing

Publication Analysis

Top Keywords

lifelong moderate-intensity
16
mitochondrial biogenesis
16
moderate-intensity exercise
12
aging associated
12
stress response
12
age-induced testicular
12
testicular atrophy
12
effects age
8
age lifelong
8
exercise training
8

Similar Publications

Background: The COVID-19 pandemic has served as a catalyst for recognizing the challenging environments in which healthcare workers operate, underscoring the urgent need to enhance their wellness to better support themselves and others. The implementation of a culture of wellness within the context of healthcare education, with a particular emphasis on individual-level strategies, allows for the realization of its intrinsic value and significance as a foundation for broader organizational strategies. This approach facilitates the establishment of a sustainable culture of wellness that benefits both current and subsequent generations of healthcare professionals.

View Article and Find Full Text PDF

Xi-Kun Yuan Pin-Shi Ni Zhen-Hao Yan Zhi Yu Zhuang-Zhi Wang Chen-Kai Zhang Fang-Hui Li Xiao-Ming Yu 1Sports Department, Nanjing University of Science and Technology ZiJin College, Nanjing, China, 2School of Sport Sciences, Nanjing Normal University, Nanjing, China, 3Shanghai Seventh People's Hospital, Shanghai, China To investigate the effects of life-long exercise (LLE) on age-related inflammatory cytokines, apoptosis, oxidative stress, ferroptosis markers, and the NRF2/KAEP 1/Klotho pathway in rats. Eight-month-old female Sprague-Dawley rats were divided into four groups: 1) LLE: 18-month LLE training starting at 8 months of age, 2) Old moderate-intensity continuous training (OMICT): 8 months of moderate-intensity continuous training starting at 18 months of age, 3) Adult sedentary (ASED): 8 month-old adult sedentary control group, and 4) Old sedentary (OSED): a 26-month-old sedentary control group. Hematoxylin eosin staining was performed to observe the pathological changes of kidney tissue injury in rats; Masson's staining to observe the deposition of collagen fibers in rat kidney tissues; and western blotting to detect the expression levels of IL-6, IL 1beta, p53, p21, TNF-alpha, GPX4, KAEP 1, NRF2, SLC7A11, and other proteins in kidney tissues.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the impact of lifelong exercise, including both moderate-intensity continuous training and high-intensity interval training, on blood lipid levels and mental behaviour in naturally ageing mice to identify effective exercise strategies for ageing-related health issues.

Methods: Six-week-old male BALB/c mice were randomly assigned to one of four groups: young control (YC), natural ageing control (OC), lifelong moderate-intensity continuous exercise (EM), and lifelong high-intensity interval exercise (EH) groups. The EM group was trained at a speed corresponding to 70 % of the maximum running speed, while the EH group was trained at a running speed alternating between 50 % of the maximum running speed, 70 % of the maximum running speed, and 90 % of the maximum running speed.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition amongst females of reproductive age, leading to lifelong cardiometabolic, reproductive, psychological, and dermatologic symptoms as well as a reduced quality of life. Lifestyle interventions, which can include structured exercise programmes delivered by appropriately trained exercise professionals such as clinical exercise physiologists, are considered first-line strategies in PCOS management due to their therapeutic effects on various health outcomes and quality of life. This position statement builds on the 2023 International Evidence-based Guideline for the Assessment and Management of PCOS and describes the role of the exercise professional in the context of the multidisciplinary care team which includes physicians and allied health professionals.

View Article and Find Full Text PDF

The study aimed to evaluate the lower limb skin temperature (Tsk) and blood concentrations of lactate (LA) and ammonia (NH) during exercise and recovery. Eleven elite sprint athletes (25 ± 3.4 yrs) and 11 elite endurance athletes (24.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!