Molecular and sequencing technologies have been successfully used in decoding biological mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves multiple inference steps. Leveraging the fast-accumulating high-throughput screening results, a number of computational models predicting ncRNA-disease associations have been developed. These tools suggest novel disease-related biomarkers or therapeutic targetable ncRNAs, contributing to the realization of precision medicine. In this survey, we first introduce the biological roles of different ncRNAs and summarize the databases containing ncRNA-disease associations. Then, we suggest a new trend in recent computational prediction of ncRNA-disease association, which is the perspective. This perspective includes integrating ncRNAs with mRNA, pathway and phenotype information. In the next section, we describe computational methodologies widely used in this research domain. Existing computational studies are then summarized in terms of their coverage of the MoA network. Lastly, we discuss the potential applications and future roles of the MoA network in terms of integrating biological mechanisms for ncRNA-disease associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570358 | PMC |
http://dx.doi.org/10.3390/ijms231911498 | DOI Listing |
Brief Bioinform
September 2024
School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shannxi 710049, China.
Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics.
View Article and Find Full Text PDFBrief Bioinform
September 2023
School of Computer Science and Engineering, Central South University,410075 Changsha, China.
Non-coding RNAs (ncRNAs) play a critical role in the occurrence and development of numerous human diseases. Consequently, studying the associations between ncRNAs and diseases has garnered significant attention from researchers in recent years. Various computational methods have been proposed to explore ncRNA-disease relationships, with Graph Neural Network (GNN) emerging as a state-of-the-art approach for ncRNA-disease association prediction.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2023
Non-coding RNAs (ncRNAs) are a class of RNA molecules that lack the ability to encode proteins in human cells, but play crucial roles in various biological process. Understanding the interactions between different ncRNAs and their impact on diseases can significantly contribute to diagnosis, prevention, and treatment of diseases. However, predicting tertiary interactions between ncRNAs and diseases based on structural information in multiple scales remains a challenging task.
View Article and Find Full Text PDFBMC Genomics
July 2023
Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, Guangdong, 519090, China.
Non-coding RNAs (ncRNAs) draw much attention from studies widely in recent years because they play vital roles in life activities. As a good complement to wet experiment methods, computational prediction methods can greatly save experimental costs. However, high false-negative data and insufficient use of multi-source information can affect the performance of computational prediction methods.
View Article and Find Full Text PDFInt J Mol Sci
September 2022
AIGENDRUG Co., Ltd., Seoul 08826, Korea.
Molecular and sequencing technologies have been successfully used in decoding biological mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves multiple inference steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!