Masson pine ( L.) is one of the most important resin-producing tree species in southern China. However, the molecular regulatory mechanisms of resin yield are still unclear in masson pine. In this study, an integrated analysis of transcriptome, proteome, and biochemical characteristics from needles of masson pine with the high and common resin yield was investigated. The results showed that chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl C), carotenoids (Car), glucose (Glu), gibberellin A9 (GA9), gibberellin A15 (GA15), and gibberellin A53 (GA53) were significantly increased, whereas fructose (Fru), jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-ILE), gibberellin A1 (GA1), gibberellin A3 (GA3), gibberellin A19 (GA19), and gibberellin A24 (GA24) were significantly decreased in the high resin yield in comparison with those in the common one. The integrated analysis of transcriptome and proteome showed that chlorophyll synthase (), hexokinase (), sucrose synthase (), phosphoglycerate kinase (), dihydrolipoamide dehydrogenase (), dihydrolipoamide succinyltransferase (), 12-oxophytodienoic acid reductase (), and jasmonate O-methyltransferases () were consistent at the transcriptomic, proteomic, and biochemical levels. The pathways of carbohydrate metabolism, terpenoid biosynthesis, photosynthesis, and hormone biosynthesis may play crucial roles in the regulation of resin yield, and some key genes involved in these pathways may be candidates that influence the resin yield. These results provide insights into the molecular regulatory mechanisms of resin yield and also provide candidate genes that can be applied for the molecular-assisted selection and breeding of high resin-yielding masson pine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570031 | PMC |
http://dx.doi.org/10.3390/ijms231911420 | DOI Listing |
Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
Fiber-reinforced composites (FRCs) possess a remarkable strength-to-weight ratio, making them ideal light-weighing alternative materials of metals used in automotive, aerospace, and outdoor equipment applications, but their recycling is challenging. Chemically recyclable thermoset polymers can enable fiber recovery and reuse; however, challenges remain in the separation and purification of depolymerized small molecules for efficient polymer recycling. To this end, a series of liquid resins for chemically recyclable polymer networks is designed based on phthalic anhydride, a widely produced and inexpensive chemical.
View Article and Find Full Text PDFMolecules
January 2025
The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
In recent years, some new "Qi-Nan" clones of with the characteristics of easy induction and high-quality agarwood have been obtained, through the cultivation and propagation of grafted seedlings. These clones are used for the intensive production of high-quality agarwood. The speed of resin formation and yield are crucial for the development of the agarwood industry.
View Article and Find Full Text PDFMolecules
January 2025
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy.
L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of have been widely utilized in traditional medicine, underscoring its important role in local healing practices.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
Resin biosynthesis in conifer is a complex process, controlled by multiple quantitative trait loci (QTLs). Quantifying resin components is traditionally expensive and labor-intensive. In this study, we employed near infrared (NIR) spectroscopy to quantify resin components in Slash pine using 240 genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!