Interactions between layered double hydroxide (LDH) nanomaterials and plasma proteins according to their particle size and surface charge were evaluated. The LDHs with different particle size (150, 350 and 2000 nm) were prepared by adjusting hydrothermal treatment and urea hydrolysis and subsequent organic coating with citrate, malite and serite was applied to control the surface charge (ζ-potential: -15, 6 and 36 mV). Adsorption isotherms and Stern-Volmer plots for fluorescence quenching indicated that the human blood plasma had weak interactions toward all the types of LDHs. The adsorption isotherms did not show significant differences in the size and surface charges, while the fluorescence quenching ratio increased with the increase in the surface charge, implying that electrostatic interaction played a major role in their interactions. The fluorescence quenching of three types of plasma proteins (human serum albumin, γ-globulin and fibrinogen) by the surface charge-controlled LDHs suggested that the proteins adsorbed on the LDHs with a single layer and additional proteins were weakly adsorbed to surround the LDHs with adsorbed proteins. It was concluded that the LDH nanomaterials are fairly compatible for blood components due to the protein corona while the electrostatic interaction can affect their interaction with the proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570392 | PMC |
http://dx.doi.org/10.3390/ijms231911367 | DOI Listing |
Neurochem Res
January 2025
Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Program of Cell and Gene Therapy, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
Antigen recognition by CD8+ T-cell receptors (TCR) is crucial for immune responses to pathogens and tumors. TCRs are cross-reactive, a single TCR can recognize multiple peptide-Human Leukocyte Antigen (HLA) complexes. The study of cross-reactivity can support the development of therapies focusing on immune modulation, such as the expansion of pre-existing T-cell clones to fight pathogens and tumors.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
A key issue in photoelectrochemical applications is the modification of the behavior of photogenerated charge barriers. An effective strategy to improve the photoelectrochemical performance of semiconductor materials is to use the facet effect to promote spatial charge separation. In this work, three different morphologies of lead chromate (PbCrO) crystals are prepared by a simple hydrothermal method that used ammonium fluoride as the structure-directing agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!