Heart failure (HF) carries the highest mortality in the western world and β-blockers [β-adrenergic receptor (AR) antagonists] are part of the cornerstone pharmacotherapy for post-myocardial infarction (MI) chronic HF. Cardiac βAR-activated βarrestin2, a G protein-coupled receptor (GPCR) adapter protein, promotes Sarco(endo)plasmic reticulum Ca-ATPase (SERCA)2a SUMO (small ubiquitin-like modifier)-ylation and activity, thereby directly increasing cardiac contractility. Given that certain β-blockers, such as carvedilol and metoprolol, can activate βarrestins and/or SERCA2a in the heart, we investigated the effects of these two agents on cardiac βarrestin2-dependent SERCA2a SUMOylation and activity. We found that carvedilol, but not metoprolol, acutely induces βarrestin2 interaction with SERCA2a in H9c2 cardiomyocytes and in neonatal rat ventricular myocytes (NRVMs), resulting in enhanced SERCA2a SUMOylation. However, this translates into enhanced SERCA2a activity only in the presence of the βAR-selective inverse agonist ICI 118,551 (ICI), indicating an opposing effect of carvedilol-occupied βAR subtype on carvedilol-occupied βAR-stimulated, βarrestin2-dependent SERCA2a activation. In addition, the amplitude of fractional shortening of NRVMs, transfected to overexpress βarrestin2, is acutely enhanced by carvedilol, again in the presence of ICI only. In contrast, metoprolol was without effect on NRVMs' shortening amplitude irrespective of ICI co-treatment. Importantly, the pro-contractile effect of carvedilol was also observed in human induced pluripotent stem cell (hIPSC)-derived cardiac myocytes (CMs) overexpressing βarrestin2, and, in fact, it was present even without concomitant ICI treatment of human CMs. Metoprolol with or without concomitant ICI did not affect contractility of human CMs, either. In conclusion, carvedilol, but not metoprolol, stimulates βarrestin2-mediated SERCA2a SUMOylation and activity through the βAR in cardiac myocytes, translating into direct positive inotropy. However, this unique βarrestin2-dependent pro-contractile effect of carvedilol may be opposed or masked by carvedilol-bound βAR subtype signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570329 | PMC |
http://dx.doi.org/10.3390/ijms231911315 | DOI Listing |
Int J Mol Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan.
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan 15588, Republic of Korea.
Cardiac ischemia-reperfusion injury (IRI) occurs when blood flow is restored to the myocardium after a period of ischemia, leading to oxidative stress and subsequent myocardial cell damage, primarily due to the accumulation of reactive oxygen species (ROS). In our previous research, we identified that miR-25 is significantly overexpressed in pressure overload-induced heart failure, and its inhibition improves cardiac function by restoring the expression of SERCA2a, a key protein involved in calcium regulation. In this study, we aimed to investigate the role of miR-25 in the context of ischemia-reperfusion injury.
View Article and Find Full Text PDFChemMedChem
January 2025
University of Michigan Michigan Medicine, Internal Medicine, 2800 Plymouth Rd, NCRC 26-220S, 48109, Ann Arbor, UNITED STATES OF AMERICA.
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.
View Article and Find Full Text PDFHeart Fail Rev
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
February 2025
Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain.
Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!