Phosphorylation plays a key role in plant biology, such as the accumulation of plant cells to form the observed proteome. Statistical analysis found that many phosphorylation sites are located in disordered regions. However, current force fields are mainly trained for structural proteins, which might not have the capacity to perfectly capture the dynamic conformation of the phosphorylated proteins. Therefore, we evaluated the performance of , a balanced force field between structural and disordered proteins, for the sampling of the phosphorylated proteins. The test results of 11 different phosphorylated systems, including dipeptides, disordered proteins, folded proteins, and their complex, indicate that the force field can better sample the conformations of phosphorylation sites for disordered proteins and disordered regions than . For the solvent model, the results strongly suggest that the force field with the water model is the best combination for the conformer sampling. Additional tests of and force fields on two phosphorylated systems suggest that the overall performance of is similar to that of and better than that of . These results can help other researchers to choose suitable force field and solvent models to investigate the dynamic properties of phosphorylation proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569523 | PMC |
http://dx.doi.org/10.3390/ijms231911285 | DOI Listing |
J Neurophysiol
January 2025
KU Leuven, Department of Movement Sciences, B-3000 Leuven, Belgium.
In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
The increased levels of carbon dioxide (CO) emissions due to the combustion of fossil fuels and the consequential impact on global climate change have made CO capture, storage, and utilization a significant area of focus for current research. In most electrochemical CO applications, water is used as a proton donor due to its high availability and mobility and use as a polar solvent. Additionally, supercritical CO is a promising avenue for electrochemical applications due to its unique chemical and physical properties.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Electrical, Electronics and Communication Engineering, Indian Institute of Technology Dharwad, Karnataka - 580011, India.
Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, TN 37830, USA.
Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!