Polysaccharide from (PSP) possesses antioxidant, antiaging, and neuroprotective activities. However, whether and how the steaming process influences the biological activities of PSP, especially against aging-related memory impairment, is not yet known. In this study, rhizome was subjected to a "nine steaming and nine drying" process, then PSPs with different steaming times were abstracted. Thereafter, the physicochemical properties were qualified; the antioxidant activities of PSPs were evaluated in a D-gal-induced HT-22 cell model, and the effects of PSPs (PSP0, PSP5 and PSP9) on memory was evaluated using D-gal-injured mice. Our results showed that while the steamed PSPs had a low pH value and a large negative charge, they shared similar main chains and substituents. Cellular experiments showed that the antioxidant activity of steamed PSPs increased. PSP0, PSP5, and PSP9 could significantly ameliorate the memory impairment of D-gal-injured mice, with PSP5 showing the optimal effect. Meanwhile, PSP5 demonstrated the best effect in terms of preventing cell death and synaptic injury in D-gal-injured mice. Additionally, the steamed PSPs increased anti-oxidative stress-related protein expression and decreased inflammation-related protein expression in D-gal-injured mice. Collectively, the steaming process improves the effects of PSPs against D-gal-induced memory impairment in mice, likely by increasing the antioxidant activity of PSPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570032 | PMC |
http://dx.doi.org/10.3390/ijms231911220 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!