Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Isoleucine-Proline-Proline (IPP) and Leucine-Lysine-Proline (LKP) are food-derived tripeptides whose antihypertensive functions have been demonstrated in hypertensive rat models. However, peptides display low oral bioavailability due to poor intestinal epithelial permeability and instability. IPP and LKP were formulated into nanoparticles (NP) using chitosan (CL113) via ionotropic gelation and then coated with zein. Following addition of zein, a high encapsulation efficiency (EE) (>80%) was obtained for the NP. In simulated gastric fluid (SGF), 20% cumulative release of the peptides was achieved after 2 h, whereas in simulated intestinal fluid (SIF), ~90% cumulative release was observed after 6 h. Higher colloidal stability (39−41 mV) was observed for the coated NP compared to uncoated ones (30−35 mV). In vitro cytotoxicity studies showed no reduction in cellular viability of human intestinal epithelial Caco-2 and HepG2 liver cells upon exposure to NP and NP components. Administration of NP encapsulating IPP and LKP by oral gavage to spontaneously hypertensive rats (SHR) attenuated systolic blood pressure (SBP) for 8 h. This suggests that the NP provide appropriate release to achieve prolonged hypotensive effects in vivo. In conclusion, chitosan-zein nanoparticles (CZ NP) have potential as oral delivery system for the encapsulation of IPP and LKP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570432 | PMC |
http://dx.doi.org/10.3390/ijms231911160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!