Rhamnolipid Micellization and Adsorption Properties.

Int J Mol Sci

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.

Published: September 2022

Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. Rhamnolipids are low molecular weight glycolipid biosurfactants that consist of a mono- or di-rhamnose head group and a hydrocarbon fatty acid chain. We examine here the micellization of purified mono-rhamnolipids and di-rhamnolipids in aqueous solutions and their adsorption on model solid surfaces. Rhamnolipid micellization in water is endothermic; the CMC (critical micellization concentration) of di-rhamnolipid is lower than that of mono-rhamnolipid, and both CMCs decrease upon NaCl addition. Rhamnolipid adsorption on gold surface is mostly reversible and the adsorbed layer is rigid. A better understanding of biosurfactant self-assembly and adsorption properties is important for their utilization in consumer products and environmental applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570487PMC
http://dx.doi.org/10.3390/ijms231911090DOI Listing

Publication Analysis

Top Keywords

rhamnolipid micellization
8
adsorption properties
8
adsorption
4
micellization adsorption
4
properties biosurfactants
4
biosurfactants naturally
4
naturally occurring
4
occurring amphiphiles
4
amphiphiles actively
4
actively pursued
4

Similar Publications

Article Synopsis
  • The study focuses on using waste frying oil as a carbon source to produce cost-effective rhamnolipids, overcoming common production barriers.
  • Optimal conditions for rhamnolipid production were identified, resulting in a yield of 2.97 g/l at specific temperature, pH, and incubation time.
  • The research indicates that using Halopseudomonas sabulinigri OZK5 for biosurfactant production is a promising biotechnological approach due to its eco-friendliness and efficiency.
View Article and Find Full Text PDF

The micellization properties of rhamnolipids (RLs) in extreme electrolyte concentrations and temperatures have gained considerable attention due to their broad industrial applications. In this study, the aggregation behavior, specifically the micellization pattern (critical micelle concentration (CMC)) of RLs produced from a newly isolated thermophilic strain of from a harsh environment of an oil field, was investigated by a spectrophotometric method at various temperatures (293-393 K) and electrolyte concentrations (NaCl: 2-20%). The result indicated that the values (0.

View Article and Find Full Text PDF

The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation.

View Article and Find Full Text PDF

Glycolipid biosurfactant, sophorolipids (SLs) and rhamnolipids (RLs) can be widely used in agriculture, food and chemical industries. The different physicochemical properties of SLs and RLs, such as hydrophilic lipophilic value (HLB) and critical micelle concentration (CMC), determine they have different application focus. Researchers are still hoping to obtain new glycolipid surfactants with unique surface activities.

View Article and Find Full Text PDF

The pH and Sucrose Influence Rhamnolipid Action Toward Planktonic and Biofilms of .

Microorganisms

October 2024

São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, P.O. Box 780, São Carlos 13566-590, SP, Brazil.

Article Synopsis
  • Bacterial resistance in food environments is a significant issue, prompting the search for effective antimicrobial strategies.
  • Rhamnolipids (RL), a type of biosurfactant, are viewed as eco-friendly alternatives and have shown effectiveness against foodborne pathogens.
  • Our study found that sucrose enhances the antimicrobial action of RL, especially at neutral pH levels, and the behavior of RL structures varies with changes in pH and sucrose concentration, highlighting their potential in food safety applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!