Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm.

Int J Environ Res Public Health

Institute of Risk Analysis, Prediction and Management (Risks-X), Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

Published: October 2022

The literature on probabilistic hazard and risk assessment shows a rich and wide variety of modeling strategies tailored to specific perils. On one hand, catastrophe (CAT) modeling, a recent professional and scientific discipline, provides a general structure for the quantification of natural (e.g., geological, hydrological, meteorological) and man-made (e.g., terrorist, cyber) catastrophes. On the other hand, peril characteristics and related processes have yet to be categorized and harmonized to enable adequate comparison, limit silo effects, and simplify the implementation of emerging risks. We reviewed the literature for more than 20 perils from the natural, technological, and socio-economic systems to categorize them by following the CAT modeling hazard pipeline: (1) event source → (2) size distribution → (3) intensity footprint. We defined the following categorizations, which are applicable to any type of peril, specifically: (1) point/line/area/track/diffuse source, (2) discrete event/continuous flow, and (3) spatial diffusion (static)/threshold (passive)/sustained propagation (dynamic). We then harmonized the various hazard processes using energy as the common metric, noting that the hazard pipeline's underlying physical process consists of some energy being transferred from an energy stock (the source), via an event, to the environment (the footprint).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565177PMC
http://dx.doi.org/10.3390/ijerph191912780DOI Listing

Publication Analysis

Top Keywords

natural technological
8
technological socio-economic
8
cat modeling
8
categorizing harmonizing
4
harmonizing natural
4
socio-economic perils
4
perils catastrophe
4
modeling
4
catastrophe modeling
4
modeling paradigm
4

Similar Publications

A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.

View Article and Find Full Text PDF

Photochromic Sodalites: From Natural Minerals to Advanced Applied Materials.

Acc Chem Res

January 2025

Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.

ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.

View Article and Find Full Text PDF

Creating the Babel Fish, a tool that helps individuals translate speech between any two languages, requires advanced technological innovation and linguistic expertise. Although conventional speech-to-speech translation systems composed of multiple subsystems performing translation in a cascaded fashion exist, scalable and high-performing unified systems remain underexplored. To address this gap, here we introduce SEAMLESSM4T-Massively Multilingual and Multimodal Machine Translation-a single model that supports speech-to-speech translation (101 to 36 languages), speech-to-text translation (from 101 to 96 languages), text-to-speech translation (from 96 to 36 languages), text-to-text translation (96 languages) and automatic speech recognition (96 languages).

View Article and Find Full Text PDF

Causality-driven candidate identification for reliable DNA methylation biomarker discovery.

Nat Commun

January 2025

The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease.

View Article and Find Full Text PDF

Observation of momentum-gap topology of light at temporal interfaces in a time-synthetic lattice.

Nat Commun

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.

Topological phases have prevailed across diverse disciplines, spanning electronics, photonics, and acoustics. Hitherto, the understanding of these phases has centred on energy (frequency) bandstructures, showcasing topological boundary states at spatial interfaces. Recent strides have uncovered a unique category of bandstructures characterised by gaps in momentum, referred to as momentum bandgaps or k gaps, notably driven by breakthroughs in photonic time crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!