Alkyl polycyclic aromatic hydrocarbons (APAHs) are more toxic and persistent than their parent compounds. Here, the concentrations, composition profiles, and spatial distribution of polycyclic aromatic compounds (PACs) in 127 topsoil samples from Huaibei coalfield were analyzed. The PAC concentrations in different functional areas were significantly different: mining area > industrial area > residential area > agricultural area. APAHs were the major contributors to PACs, accounting for 71-83% of total PACs. Alkylnaphthalenes and alkylphenanthrenes were the primary APAH components, accounting for 83-87% of APAHs. Principal component analysis showed that petrogenic source, coal and biomass combustion, and vehicle emissions were the primary sources of PACs. By comparing the fingerprint information of soil, coal, and coal gangue, it was hypothesized that the petrogenic source of PAC pollution in typical mining areas and surrounding areas are coal particle scattering and coal gangue weathering. Some coal mining and industrial areas potentially pose risks to children, whereas others do not. There are limited evaluation criteria for alkyl PAHs; hence, the estimated risk is likely lower than the actual risk. In addition to the conventional 16 PAHs, it is critical to consider a broader range of PACs, especially APAHs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566202 | PMC |
http://dx.doi.org/10.3390/ijerph191912733 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China. Electronic address:
The existing evidence indicating that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with a range of adverse outcomes, including alterations in anthropometric indices, underscores the need for further investigation into the underlying mechanisms. This study aims to examine the effects of prenatal PAH exposure on anthropometric indices and telomere length (TL), as well as to explore whether changes in TL can serve as a predictor of alterations in anthropometric measures. The study was conducted in Shenyang, China, with 2460 pregnant women participating between 2022 and 2023.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Astronomy Department, University of Maryland, College Park, Maryland 20742, United States.
The CN stretch frequency of neutral, gas-phase 9-cyanoanthracene is 2207 cm (4.531 μm) based on high-resolution infrared absorption experiments coupled with a new hybrid anharmonic quantum chemical methodology. A broad band (full-width at half-maximum of 47 cm) is observed and assigned to multiple transitions, including the CN stretch fundamental and various combination bands that gather intensity from strong anharmonic coupling with the bright CN stretch.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.
Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.
View Article and Find Full Text PDFEnviron Res
January 2025
Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Bioaugmented slurry technology is a sustainable remediation technology for PAHs-contaminated soil. However, the lack of experimental data on the remediation of complex, actual contaminated soils has hindered the practical application of this technology. This study explored the bioaugmented degradation of PAHs using actual soil slurry with and without the addition of microbial agents in the microscopic world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!