Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the high toxicity and potential health risk of cadmium (Cd), the influencing effects of major factors (like pH, OM, and clay, etc.) on Cd bioaccumulation and transfer from soil to crop grains are highly concerned. Multiple linear regression models were usually applied in previous literature, but these linear models could not reflect the threshold effects of major factors on Cd transfer under different soil environmental conditions. Soil pH and other factors on Cd transfer in a soil-plant system might pose different or even contrary effects under different soil Cd exposure levels. For this purpose, we try to apply a threshold regression model to analyze the effects of key soil parameters on Cd bioaccumulation and transfer from soil to wheat. The results showed that under different soil pH or Cd levels, several factors, including soil pH, organic matter, exchangeable Cd, clay, P, Zn, and Ca showed obvious threshold effects, and caused different or even contrary impacts on Cd bioaccumulation in wheat grains. Notably, the increase of soil pH inhibited Cd accumulation when pH > 7.98, but had a promotional effect when pH ≤ 7.98. Thus, threshold regression analysis could provide a new insight that can lead to a more integrated understanding of the relevant factors on Cd accumulation and transfer from soil to wheat. In addition, it might give us a new thought on setting regulatory limits on Cd contents in wheat grains, or the inhibitory factors of Cd transfer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565076 | PMC |
http://dx.doi.org/10.3390/ijerph191912363 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!