Willin/ has been reported as a potential Alzheimer's disease (AD) risk gene in a series of genome-wide association and neuroimaging studies; however, the mechanisms underlying its potential role in AD pathogenesis remain unknown. Here, we demonstrate the direct effects of Aβ on Willin/FRMD6 expression and position mitochondrial oxidative stress as a novel potential mechanism underlying the role of Willin/FRMD6 in AD pathogenesis. Specifically, using mouse hippocampal HT-22 cells and primary mouse neurons, we show that Aβ induces downregulation of Willin/FRMD6 protein expression. Furthermore, we demonstrate that Willin/FRMD6 knockdown leads to mitochondrial dysfunction and fragmentation, as well as upregulation of ERK1/2 signaling, both of which are reported to be key early features of AD pathogenesis. Importantly, increasing Willin/FRMD6 expression was able to rescue Aβ-induced abnormalities in mitochondrial morphology, function, and energetics. Thus, enhancing Willin/FRMD6 expression holds potential as a therapeutic strategy for protecting against Aβ-induced mitochondrial and neuronal dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562665 | PMC |
http://dx.doi.org/10.3390/cells11193140 | DOI Listing |
Cells
October 2022
School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
Willin/ has been reported as a potential Alzheimer's disease (AD) risk gene in a series of genome-wide association and neuroimaging studies; however, the mechanisms underlying its potential role in AD pathogenesis remain unknown. Here, we demonstrate the direct effects of Aβ on Willin/FRMD6 expression and position mitochondrial oxidative stress as a novel potential mechanism underlying the role of Willin/FRMD6 in AD pathogenesis. Specifically, using mouse hippocampal HT-22 cells and primary mouse neurons, we show that Aβ induces downregulation of Willin/FRMD6 protein expression.
View Article and Find Full Text PDFFront Cell Neurosci
September 2020
Centre of Biophotonics, School of Biology, University of St Andrews, St Andrews, United Kingdom.
Willin/FRMD6 is part of a family of proteins with a 4.1 ezrin-radixin-moesin (FERM) domain. It has been identified as an upstream activator of the Hippo pathway and, when aberrant in its expression, is associated with human diseases and disorders.
View Article and Find Full Text PDFAging Cell
April 2019
Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
The mechanism of age-related decline in the angiogenic potential of the myocardium is not yet fully understood. Our previous report revealed that the aging of cardiac microvascular endothelial cells (CMECs) led to changes in their expression of receptor Trk isoforms: among the three isoforms (TrkB-FL, TrkB-T1 and TrkB-T2), only the truncated TrkB-T1 isoform continued to be expressed in aged CMECs, which led to decreased migration of CMECs in aging hearts. Thus far, how BDNF induces signalling through the truncated TrkB-T1 isoform in aged CMECs remains unclear.
View Article and Find Full Text PDFPLoS One
November 2013
Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, United Kingdom.
Willin/FRMD6 was first identified in the rat sciatic nerve, which is composed of neurons, Schwann cells, and fibroblasts. Willin is an upstream component of the Hippo signaling pathway, which results in the inactivation of the transcriptional co-activator YAP through Ser127 phosphorylation. This in turn suppresses the expression of genes involved in cell growth, proliferation and cancer development ensuring the control of organ size, cell contact inhibition and apoptosis.
View Article and Find Full Text PDFOncogene
January 2012
School of Biology, University of St Andrews, St Andrews, UK.
The Salvador/Warts/Hippo (Hippo) signaling pathway defines a novel signaling cascade regulating cell contact inhibition, organ size control, cell growth, proliferation, apoptosis and cancer development in mammals. The Drosophila melanogaster protein Expanded acts in the Hippo signaling pathway to control organ size. Previously, willin/FRMD6 has been proposed as the human orthologue of Expanded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!