AI Article Synopsis

Article Abstract

The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564294PMC
http://dx.doi.org/10.3390/cells11193079DOI Listing

Publication Analysis

Top Keywords

super-resolution imaging
8
endogenous rna
8
imaging
6
rna
5
technologies enabling
4
enabling single-molecule
4
single-molecule super-resolution
4
imaging mrna
4
mrna transient
4
transient nature
4

Similar Publications

Aims: Establishment of a protocol for routine single-molecule localisation microscopy (SMLM) imaging on formalin fixed paraffin embedded (FFPE) tissue using medical renal disease including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS).

Methods: Protocol for normal and diseased renal FFPE tissue was developed to investigate the clinical diagnostic potential of SMLM. Antibody concentrations were determined for confocal microscopy and transferred to SMLM.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Using HBmito Crimson to Observe Mitochondrial Cristae Through STED Microscopy.

Bio Protoc

January 2025

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.

Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.

View Article and Find Full Text PDF

Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation. Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels, which significantly restricts their practical deployments on resource-limited devices. In this paper, we propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!