The goal of this study was to contribute to the general knowledge of the Sarcidano Horse, both by the identification of the genetic basis of the coat color and by updating the exact locations of the genotyping sites, based on the current EquCab3.0 genome assembly version. One-hundred Sarcidano Horses, living in semi-feral condition, have been captured to perform health and biometric checks. From that total number, 70 individual samples of whole blood were used for DNA extraction, aimed to characterize the genetic basis of the coat color. By genotyping and sequencing analyses of the Exon 1 and Exon 3, a real image of the coat color distribution in the studied population has been obtained. Chestnut and Black resulted in the most representative coat colors both from a phenotypic and genotypic point of view, that is suggestive of no human domestication or crossbreeding with domestic breed. Due to its ancient origin and genetic isolation, an active regional plan for the conservation of this breed would be desirable, focused on maintenance of resident genotypes and genetic resources. Collection and management of DNA, sperm, embryos, with the involvement of research centers and Universities, could be a valid enhancing strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558981PMC
http://dx.doi.org/10.3390/ani12192677DOI Listing

Publication Analysis

Top Keywords

coat color
16
sarcidano horse
8
genetic basis
8
basis coat
8
coat
5
characterization sarcidano
4
horse coat
4
color
4
color genes
4
genes goal
4

Similar Publications

Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas.

View Article and Find Full Text PDF

Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.

View Article and Find Full Text PDF

The present investigation deals with comparisons drawn among three types of different mustard seed coat colors, namely, Black (), Brown (), and White (), with respect to protein's bio-availability through pepsin digestibility, with and without the involvement of major anti-nutritional factors (glucosinolate type AITC, Allylisothiothiocyanate) and relative food functions. These are validated by means of crude protein determination, precipitated protein isolate preparation for evaluating the fat absorption capacity (FAC), emulsifying activity (EA), emulsion stability (ES), whippability, foam stability (FS), the nitrogen solubility index (NSI), and the protein dispersibility index (PDI). The results indicate that the partial removal of glucosinolates from brown mustard (0.

View Article and Find Full Text PDF

Expression and Analysis of Gene in the Skin from Three Locations on Dun Mongolian Bider Horse.

Genes (Basel)

December 2024

Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!